If a= -70, b=4 and c=-10, verify a * (b * c) = (a x b) * C
Answers
Answered by
3
Answer:
(i) To verify : A×(B∩C)=(A×B)∩(A×C)
We have B∩C={1,2,3,4}∩{5,6}=ϕ
∴ L.H.S = A×(B∩C)=A×ϕ=ϕ
A×B={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}
A×C={(1,5),(1,6),(2,5),(2,6)}
∴R.H.S.=(A×B)∩(A×C)=ϕ
∴L.H.S=R.H.S
Hence A×(B∩C)=(A×B)∩(A×C)
(ii) To verify: A×C is a subset of B×D
A×C={(1,5),(1,6),(2,5),(2,6)}
B×D={(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),
(3,8),(4,5),(4,6),(4,7),(4,8)}
We can observe that all the elements of set A×C are the elements of set B×D
Therefore A×C is a subset of
Answered by
4
Step-by-step explanation:
a*(b*c)
-70(4*(-10))
-70(-40)
=2800
(a*b)*c
(-70*4)(-10)
(-280)(-10)
2800
Similar questions
English,
2 days ago
Physics,
5 days ago
Social Sciences,
5 days ago
Sociology,
8 months ago
Physics,
8 months ago