Math, asked by sneha142006, 5 months ago

If a=8+3√7 and b=1/a, then find the value of (a+b)²​

Answers

Answered by Anonymous
14

ANSWER :-

  • (a+b)² = 256

 \\

GIVEN :-

 \\  \sf  \bullet \: a = 8 + 3 \sqrt{7}   \: \\  \\  \sf \bullet  \: b =  \dfrac{1}{a}  \\  \\

TO FIND :-

 \\  \sf \:  \bullet \: (a +  {b)}^{2}  \\  \\

SOLUTION :-

 \\

We have ,

 \sf \: a = 8 + 3 \sqrt{7}  \\

Taking reciprocal , we get...

 \\  \sf \:  \dfrac{1}{a}  =  \dfrac{1}{8 + 3 \sqrt{7} }  \\

Rationalising the denominator ,

Rationalising factor is (8 - 3√7)

 \\   \implies \sf \dfrac{1}{a}  =  \dfrac{1}{8 + 3\sqrt{7} }  \times  \dfrac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }  \\  \\  \\   \implies\sf  \dfrac{1}{a}  =  \dfrac{8 - 3 \sqrt{7} }{(8 + 3 \sqrt{7})(8 - 3 \sqrt{7} ) }  \\  \\  \\ \implies \sf  \dfrac{1}{a}  =  \dfrac{8 - 3 \sqrt{7} }{ {8}^{2}  -( {3 \sqrt{7}) }^{2}  }  \\  \\  \\  \implies \sf  \dfrac{1}{a}  =  \dfrac{8 - 3 \sqrt{7} }{64 - 63}  \\  \\  \\  \implies\sf   \boxed{ \sf\dfrac{1}{a}  = 8 - 3 \sqrt{7} } \\  \\

 \\   \dashrightarrow\boxed{ \sf \:  \frac{1}{a}  = b = 8 - 3 \sqrt{7} } \\  \\

We have ,

  • a = 8 + 3√7
  • b = 8 - 3√7

 \\ \to  \sf \: (a +  {b)}^{2}  = (8 + \cancel{ 3 \sqrt{7}  }+ 8 -  { \cancel{3 \sqrt{7}}) } \: ^{2}  \\  \\  \to \sf (a +  {b)}^{2}  =   {16}^{2}  \\  \\  \sf \to  \boxed{ \sf(a +  {b)}^{2}  = 256} \:

Similar questions