Math, asked by riyadang11, 1 year ago

if a=8+3√7and b=1/a than what will be the value of a square + b square
a {}^{2}  + b {}^{2}

Answers

Answered by DaIncredible
2

Answer:

254.

Step-by-step explanation:

Given,

a = 8 + 3√7

So,

b =  \frac{1}{a}  \\  \\ b =  \frac{1}{8 + 3 \sqrt{7} }

Rationalizing the denominator we get:

b =  \frac{1}{8 + 3 \sqrt{7} } \times  \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }   \\  \\ b =  \frac{8 - 3 \sqrt{7} }{ {(8)}^{2}  -  {(3 \sqrt{7}) }^{2} }  \\  \\ b =  \frac{8 - 3 \sqrt{7} }{64 - 63}  \\  \\ \bf b = 8 - 3 \sqrt{7}

Putting the value in a² +

 {(8 + 3 \sqrt{7}) }^{2}  +  {(8 - 3 \sqrt{7} )}^{2}  \\  \\  = ( {(8)}^{2}  +  {(3 \sqrt{7}) }^{2}  + 2.8.3 \sqrt{7} ) \\   + ( {(8)}^{2}  +  {(3 \sqrt{7} }^{2} ) - 2.8.3 \sqrt{7} ) \\  \\  = (64 + 63 + 48 \sqrt{7} ) + (64 + 63 - 48 \sqrt{7} ) \\  \\  = 127 + 48 \sqrt{7}  + 127 - 48 \sqrt{7}  \\  \\  \bf  = 254

Similar questions