Math, asked by nishikavyashob, 1 year ago

if a=8+3 root 7,b=1/a,find the value of a2+b2

Answers

Answered by chaurasiashikhar
338
a = 8+3√7   b = 1/a  ⇒ 1/8+3√7
                                 ⇒ 8-3√7/1  (on rationalising)
 now,    a = 8+3√7    b = 8-3√7
  ∴  a²+b² = (8+3√7)² + (8-3√7)²
               =  (64 + 63+48√7) + (64 + 63 - 48√7)
       a²+b² =   254

chaurasiashikhar: plzz....... mark it as brainliest plzzz
ameerafarooq95: how do you get 48 root 7??
Answered by hukam0685
11

The value of \bf {a}^{2}  +  {b}^{2} is 254.

Given:

  • a = 8 + 3 \sqrt{7}  \\
  • b =  \frac{1}{a}  \\

To find:

  • Find the value of  {a}^{2}   +  {b}^{2}  \\

Solution:

Concept/Formula to be used:

Rationalization:

  • Any fractional number can be free with any radical sign, by rationalization.
  • Rationalization factor of denominator is multiplied with numerator and denominator.
  • RF is conjugate of denominator; i.e. if a+√b is denominator then a-√b is RF.

Identity used:

  1. \bf (x - y)(x + y) =  {x}^{2}  -  {y}^{2} \\
  2. \bf ( {x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\
  3. \bf ( {x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\

Step 1:

As a = 8 + 3 \sqrt{7}  \\

thus, rationalization is not required for this, as denominator has no radical sign.

Step 2:

Rationalize the denominator.

b =  \frac{1}{8  + 3 \sqrt{7} }  \\

Multiply and divide by RF.

b =  \frac{1}{8 + 3 \sqrt{7} }  \times  \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }  \\

or

use Identity 1 in denominator.

b =  \frac{8 - 3 \sqrt{7} }{( {8)}^{2}  - ( {3 \sqrt{7}) }^{2} }  \\

or

b =  \frac{8 - 3 \sqrt{7} }{64 - 63} \\

or

\bf b = 8 - 3 \sqrt{7 }

Step 3:

Find square of a and b.

Apply Identity 2.

 {a}^{2}  = ( {8  + 3 \sqrt{7} )}^{2}  \\

or

 {a}^{2}  = ( {8)}^{2}  + ( {3 \sqrt{7} )}^{2}  + 2 \times 8 \times 3 \sqrt{7}  \\

or

 {a}^{2}  = 64 + 63  + 48 \sqrt{7}  \\

or

\bf {a}^{2}  = 127  +48 \sqrt{7}  \\

by the same way; apply Identity 3.

 \bf {b}^{2}  = 127 - 48 \sqrt{7}  \\

Step 4:

Add both.

 {a}^{2}  +  {b}^{2}  = 127 + 48 \sqrt{7}  + 127 - 48 \sqrt{7}  \\

or

{a}^{2}  +  {b}^{2} = 254 \\

Thus,

\bf \red{{a}^{2}  +  {b}^{2} = 254 }\\

Learn more:

1) Simplify (√5+√2) the whole square

https://brainly.in/question/4117666

2) if x = 3 + √8. find the value of x^2 + 1/x^2

https://brainly.in/question/4359249

Similar questions