Math, asked by WatchDogs123, 9 months ago

if a=8+3 root7,find value of a^2+1/a^2

Answers

Answered by Anonymous
2

Answer:

254

Step-by-step explanation:

a = 8 + 3√7

a² = ( 8 + 3√7 )² = 8² + (3√7)² + 2×8×3√7

   = 64 + 63 + 48√7

   = 127 + 48√7

1/a² = 1 / ( 127 + 48√7 )

      = ( 127 - 48√7 ) / ( ( 127 + 48√7 ) ( 127 - 48√7 ) )

      = ( 127 - 48√7 ) / ( 127² - (48√7)² )

      = ( 127 - 48√7 ) / ( 16129 - 16128 )

      = 127 - 48√7

a² + 1/a² = ( 127 + 48√7 ) + ( 127 - 48√7 ) = 127 + 127 = 254

--------------------------------

Or a better, slightly trickier, way:

a = 8 + 3√7

1/a = 1 / ( 8 + 3√7 )

    = ( 8 - 3√7 ) / ( ( 8 + 3√7 ) ( 8 - 3√7 ) )

    = ( 8 - 3√7 ) / ( 8² - (3√7)² )

    = ( 8 - 3√7 ) / ( 64 - 63 )

    = 8 - 3√7

a + 1/a = ( 8 + 3√7 ) + ( 8 - 3√7 ) = 8 + 8 = 16

a² + 1/a² = ( a + 1/a )² - 2 = 16² - 2 = 256 - 2 = 254

Hope that helps!

Answered by Anonymous
1

Answer:

254

Step-by-step explanation:

Given that,

a = 8 + 3√7

To find the value of a^2 + 1/a^2.

First of all, we need to find the value of a^2.

 =  >  {a}^{2}  =  {(8 + 3 \sqrt{7}) }^{2}

But, we know that,

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

Therefore, we will get,

 =  >  {a}^{2}  =  {(8)}^{2}  + 2(8)(3 \sqrt{7} ) +  {(3 \sqrt{7} )}^{2}   \\  \\   =  >  {a}^{2}  = 64 + 48 \sqrt{7}  + 63 \\  \\  =  >  {a}^{2}  = 127 + 48 \sqrt{7}

Therefore, we will get,

 =  >  \frac{1}{ {a}^{2} }  =  \frac{1}{127 + 48 \sqrt{7} }

Now, we have,

a = 8 + 3 \sqrt{7}

Therefore, we have,

 =  >  \frac{1}{a}  =  \frac{1}{8 + 3 \sqrt{7} }  \\  \\  =  >  \frac{1}{a}  =  \frac{1}{8 +  3 \sqrt{7} }  \times  \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }  \\  \\  =  >  \frac{1}{a}  =  \frac{8 - 3 \sqrt{7} }{ {(8)}^{2}  -  {(3 \sqrt{7} )}^{2} }  \\  \\  =  >  \frac{1}{a}  =  \frac{8 - 3 \sqrt{7} }{64 - 63} \\  \\  =  >  \frac{1}{a}   =  \frac{8 - 3 \sqrt{7}  }{ 1}  \\  \\  =  >  \frac{1}{a}  = 8  - 3 \sqrt{7}

Now, we have,

 =  >  {a}^{2}  +  \frac{1}{ {a}^{2} }  =  {(a +  \frac{1}{a} )}^{2} - 2

Substituting the values, we get,

 =  >  {a}^{2}  +  \frac{1}{ {a}^{2} }  ={ (8 + 3 \sqrt{7}  + 8 - 3 \sqrt{7} ) }^{2}   - 2 \\  \\  =  >  {a}^{2}  +  \frac{1}{ {a}^{2} }  =  {(16)}^{2}  - 2 \\  \\  =  >  {a}^{2}   +  \frac{1}{ {a}^{2} }  = 256 - 2 \\  \\  =  >  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 254

Hence, required value is 254.

Similar questions