If a = 8+√7
b = 1/9
find a^2+b^2
Answers
Answered by
1
Answer:
27/31
Step-by-step explanation:
a = √8 - √7 , a = 1/b = b = 1/a = {1/(√8-√7)}
=> b= (√8+√7)/{(√8)^2-(√7)^2} = √8 + √7.
So (a^2+b^2–3ab)/(a^2+ab+b^2)
= {(a-b)^2 - ab}/{a+b)^2-ab}. ……(1)
Now a+b = (√8-√7)+(√8+√7) = 2√8
a - b = (√8-√7)-(√8+√7)= -2√7
ab = (√8-√7)(√8+√7)= 8–7 = 1
Substituting these values in (1) we get
{(-2√7)^2 - 1}/{(2√8)^2–1) = (28–1)/(32–1)
= 27/31
Similar questions