Math, asked by lohi7144, 11 months ago

if a= 9-4√5, find the value of (a-1/a)²​

Answers

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(a-\frac{1}{a})^{2}=320}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies a = 9 - 4 \sqrt{5}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies( a -  \frac{1}{a} )^{2}  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =  {a}^{2}  +  \frac{1}{ { a }^{2} }  - 2 \times a \times  \frac{1}{a}  \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  = {(9 - 4 \sqrt{5}) }^{2}  +  \frac{1}{(9 - 4 \sqrt{5} )^{2} }  - 2 \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =  {9}^{2}  +  {(4 \sqrt{5}) }^{2}  - 72 \sqrt{5}  +  \frac{1}{ {9}^{2}  +  {(4 \sqrt{5 }) }^{2}  - 72 \sqrt{5}  }  - 2 \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =81 + 80 - 72 \sqrt{5}  +  \frac{1}{81 + 80 - 72 \sqrt{5} }  - 2

\tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =161 - 72 \sqrt{5}   + \frac{1}{161 - 72 \sqrt{5} }  \times  \frac{161  +  72 \sqrt{5} }{161 + 72\sqrt{5} }  - 2 \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =161 - 72 \sqrt{5}  +  \frac{161 + 72\sqrt{5} }{ {161}^{2}  -  {(72 \sqrt{5}) }^{2} }  - 2 \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =161 - 72  \sqrt{5}  +  \frac{161 + 72 \sqrt{5} }{25921 - 25920}  - 2 \\  \\ \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =161 - 72 \sqrt{5}  + 161 + 72 \sqrt{5}  - 2 \\  \\  \tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =322 - 2 \\  \\ \green{\tt:  \implies  {(a -  \frac{1}{a}) }^{2}  =320 }

Answered by CunningKing
92

GiveN :-

a = 9 - 4√5

TO EvaluatE :-

\displaystyle{(\sf{a-\frac{1}{a} })^2}

SolutioN :-

\displaystyle{(\sf{ a-\frac{1}{a} })^2}\\\\\displaystyle{\sf{=\{ (9-4\sqrt{5})-\frac{1}{(9-4\sqrt{5})} }\}^2}\\\\\\\displaystyle{\sf{=(9-4\sqrt{5})^2+[\frac{1}{(9-4\sqrt{5})} }]^2-2\times(9-4\sqrt{5})\times\frac{1}{(9-4\sqrt{5})} }}\\\\\\\displaystyle{\sf{=(9-4\sqrt{5})^2+[\frac{1}{(9-4\sqrt{5})} }]^2-2}}  ....(1)

Lets find the value of (9 - 4√5)².

(9 - 4√5)² = (9)² + (4√5)² - 2 × 9 × 4√5

= 81 + (16 × 5) - 72√5

= 81 + 80 - 72√5

= 161 - 72√5

Putting this value in equation (1) :-

\displaystyle{\sf{=161-72\sqrt{5} +\frac{1}{(161-72\sqrt{5})} -2}}\\\\\\\displaystyle{\sf{=161-72\sqrt{5} +\frac{161+72\sqrt{5} }{(161-72\sqrt{5})(161+72\sqrt{5})} -2}}\\\\\\\displaystyle{\sf{=161-72\sqrt{5} +\frac{161+72\sqrt{5} }{(161)^2-(72\sqrt{5})^2} -2}}\\\\\displaystyle{\sf{=161-72\sqrt{5} +\frac{161+72\sqrt{5} }{25921-(5184\times5)}-2}}\\\\\\\displaystyle{\sf{=161-72\sqrt{5}+\frac{161+72\sqrt{5}}{25921-25920}-2  }}\\\\

\displaystyle{\sf{=161-72\sqrt{5}+\frac{161+72\sqrt{5}}{1}-2  }}\\\\\\\displaystyle{\sf{=161-72\sqrt{5}+161+72\sqrt{5}-2  }}\\\\\displaystyle{\sf{=161+161-2  }}\\\\\displaystyle{\sf{=322-2  }}\\\\\Large\underline{\underline{\boxed{\boxed{\displaystyle{\sf{=320  }}}}}}


BrainlyConqueror0901: well done : )
Similar questions