Math, asked by Rits96, 1 year ago

If a=9 - 4√5, find the value of a sq + 1/a sq.​

Answers

Answered by mitajoshi11051976
1
 = {(9 - 4 \sqrt{5}) }^{2} + \frac{1}{ { (9 - 4 \sqrt{5})}^{2} } \\

We first calculate (9-4√5) ^2

 = {(9 - 4 \sqrt{5}) }^{2} \\ = {9}^{2} - 2(9)(4 \sqrt{5} ) + {(4 \sqrt{5}) }^{2} \\ = 81 - 72 \sqrt{5} + 20 \\ = 101 - 72 \sqrt{5}

Put values:-

 = 101 - 72 \sqrt{5} + \frac{1}{ 101 - 72 \sqrt{5} } \\<br /><br /> = 101 - 72 \sqrt{5} + \frac{1}{ \: 101 - 72 \sqrt{5} } \: \times \frac{101 + 72 \sqrt{5} }{101 + 72 \sqrt{5} } \\ = 101 - 72 \sqrt{5} + \frac{101 + 72 \sqrt{5} }{10201 - 360} \\<br /><br /> = 101 - 72 \sqrt{5} + \frac{101 + 72 \sqrt{5} }{9841} \\ <br /><br />= 101 - 72 \sqrt{5} + 101 + 72 \sqrt{5} - 9841 \\<br /><br /> = 101 - 72 \sqrt{5} + 72 \sqrt{5 } - 9440 \\<br /><br /> = 101 - 9440 \\<br /><br /> = - 9339

Hope it helps.

______________________________________

mark as brainliest answer.
Similar questions