Math, asked by pritapant1748, 1 month ago

if a= 9-4 root 5 find the value of (a-1/a )^2 ​

Answers

Answered by sudhanshudhek76
2

\huge\{\overbrace{\underbrace{\bold{\pmb{ \:  \: \purple{answer} \:  \: }}}}\}

 ({a -  \frac{1}{a}) }^{2}

Here a = 9 - 4_/5

 ({9 - 4 \sqrt{5} -  \frac{1}{9 - 4 \sqrt{5} } ) }^{2}

 ({1 - 72 \sqrt{5} -  \frac{1}{9 - 4 \sqrt{5} })  }^{2}

 ( { \frac{ - 72 \sqrt{5} }{9 - 4 \sqrt{5} } )}^{2}  =  \frac{5184 \times 5}{9 - (16 - 5)}

 \frac{25920}{2}  = 12960

Answered by vipinkumar212003
0

Answer:

 \red{  \underline{ \mathfrak{given }} \colon\: a = 9 - 4 \sqrt{5}  }\\  \blue{ {(a -  \frac{1}{a} )}^{2}  =  {a}^{2}  +   \frac{1}{ {a}^{2} }  - 2 \times a \times  \frac{1}{a}  }\\  \blue{ =  {(9 - 4 \sqrt{5} )}^{2}  +  \frac{1}{ {(9 - 4 \sqrt{5} )}^{2} }  - 2 }\\  \blue{  =( 81 + 80 - 72 \sqrt{5} ) +  \frac{1}{(81 + 80 - 72 \sqrt{5})}  - 2} \\  \blue{ = (161 - 72 \sqrt{5} ) +  \frac{1}{(161  - 72 \sqrt{5} )}  - 2 }\\   \blue{ =  \frac{ {(161 - 72 \sqrt{5}) }^{2} + 1  - 2(161 - 72 \sqrt{5} ) }{(161 - 72 \sqrt{5} )}  }\\   \blue{=  \frac{25921 + 25920 - 23184 \sqrt{5} + 1 - 322 + 144 \sqrt{5}  }{(161 - 72 \sqrt{5}) } } \\   \blue{=  \frac{51520 - 23040 \sqrt{5} }{161 - 72 \sqrt{5} } } \\ \\  \red{\mathfrak{\underline{\large{hope \: it \: helps \: you }}}} \\ \green{\mathfrak{\underline{\large{mark \: me \: brainliest}}}}

Similar questions