Math, asked by julkakanavp9dnl3, 1 year ago

if a=9+4root 5 and b=1/a then find the value of a^2+b^2

Answers

Answered by BrainlyQueen01
30
heya ✋

here's ur answer

touch the picture above

#thankyou
Attachments:

DaIncredible: nice explained ma'am ^_^
BrainlyQueen01: I'm student yar
DaIncredible: ^_^
Answered by DaIncredible
20
Heya there !!!
Here is the answer you were looking for:

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}


Given,
a = 9 + 4√5
b = 1/a

So, putting the value of a we get,

b =  \frac{1}{9 + 4 \sqrt{5} }  \\

On rationalizing the denominator we get,

b =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{ {(9)}^{2}  -  {(4 \sqrt{5} )}^{2} }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  b = 9  - 4 \sqrt{5}

Now putting the values of a and b in a^2 + b^2 we get,

 {a}^{2}  +  {b}^{2}  \\  \\  =  {(9 + 4 \sqrt{5} )}^{2}  +  {(9 - 4 \sqrt{5}) }^{2}  \\  \\  = ( {(9)}^{2}  +  {(4 \sqrt{5}) }^{2}  + 2(9)(4 \sqrt{5} )) + ( {(9)}^{2}  +  {(4 \sqrt{5}) }^{2}  - 2(9)(4 \sqrt{5} )) \\  \\  = (81 + 80 + 72 \sqrt{5} ) + (81 + 80 - 72 \sqrt{5} ) \\  \\  = 161 + 72 \sqrt{5}  + 161 - 72 \sqrt{5}  \\  \\  = 161 + 161 \\  \\  = 322

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section or inbox me ^_^

@Mahak24

Thanks...
☺☺
Similar questions