Math, asked by abhaykumarsingh30, 11 months ago

if a=9+4root 5 find (a)a+1/a (b)a-1/a​

Answers

Answered by Delta13
0

Given:

a = 9 + 4 \sqrt{5}

To find:

The value of

 \: a) \: a +  \frac{1}{a}  \\  \\ b) \: a -  \frac{1}{a}

Solution:

a = 9 + 4 \sqrt{5}  \\  \\  =  >  \frac{1}{a}  =   \frac{1}{9 + 4 \sqrt{5} }

Rationalizing the denominator.

 =  >  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  =  >  \frac{9 - 4 \sqrt{5} }{(9) {}^{2}  - (4 \sqrt{5}) {}^{2}  }

We know that (a+b)(a-b)= a²-b²

 =  >  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  =  >  \frac{1}{a}  = 9 - 4 \sqrt{5}

So, we will put the values of a and 1/a

a)

a +  \frac{1}{a}  \\  \\  = 9 + 4 \sqrt{5}  + (9 - 4 \sqrt{5} ) \\  \\  = 18 +  \cancel{4 \sqrt{5} } -  \cancel{4 \sqrt{5} } \\  \\  = 18

b)

a -  \frac{1}{a}  \\  \\  = 9 + 4 \sqrt{5}  - (9 - 4 \sqrt{5} ) \\  \\  = 9 + 4 \sqrt{5}  - 9  +  4 \sqrt{5}  \\  \\  =  \cancel{9} + 4 \sqrt{5}  -  \cancel{9} + 4 \sqrt{5 }  \\  \\  = 4 \sqrt{5}  + 4 \sqrt{5}  \\  \\  = 8 \sqrt{5}

Hope it helps you

Mark as brainliest

Similar questions