Math, asked by cammuthukumar, 8 months ago

If A(a,0), B(-a,0) then the locus of the point P such that PA2+PB2=2c2 is :

Answers

Answered by MaheswariS
5

\textbf{Given:}

\text{P is the moving point and}

PA^2+PB^2=2c^2

\textbf{To find:}

\text{The locus of P}

\textbf{Solution:}

\text{Let P(h,k) be the moving point}

PA=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PA=\sqrt{(h-a)^2+(k-0)^2}

PA=\sqrt{(h-a)^2+k^2}

PB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PB=\sqrt{(h+a)^2+(k-0)^2}

PB=\sqrt{(h+a)^2+k^2}

\text{Condition:}\;PA^2+PB^2=2c^2

\implies\,(h-a)^2+k^2+(h+a)^2+k^2=2c^2

\implies\,h^2+a^2-2ah+k^2+h^2+a^2+2ah+k^2=2c^2

\implies\,h^2+a^2+k^2+h^2+a^2+k^2=2c^2

\implies\,2h^2+2k^2+2a^2-2c^2=0

\text{Divide by 2}

\implies\,h^2+k^2+a^2-c^2=0

\textbf{Answer:}

\textbf{The locus of P is}

\bf\,x^2+y^2+a^2-c2=0

Find more:

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

Answered by poornaganesh249
1

Step-by-step explanation:

answr

What would you like to ask?

Maths

 Let A=(1,0) , B=(−1,0),C=(2,0), the locus of a point P such that PB2+PC2=2PA2 is

A

a straight line parallel to x-axis

B

a straight line parallel to y-axis

Correct Answer

C

pair of straight line

D

combined equation of coordiante axes

Answer

Let P=(x,y)

Then, PA=(x−1)2+y2 ...(i)

PB=(x+1)2+y2 ...(ii)

PC=(x−2)2+y2 ...(iii)

Hence, PC2+PB2=2PA2

⇒[(x−2)2+y2]+[(x+1)2+y2]=

Similar questions