Math, asked by bipulskp597r7, 9 months ago

if (a + a^-1 = 2) find out (a^2020 + a^-2020 = ?)​

Answers

Answered by sandy1816
3

Answer:

your answer attached in the photo

Attachments:
Answered by pulakmath007
46

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

GIVEN

 \displaystyle \: a +  {a}^{ - 1}  = 2

TO DETERMINE

 \displaystyle \: {a}^{2020}  +  {a}^{ - 2020}

EVALUATION

 \displaystyle \: a +  {a}^{ - 1}  = 2

 \implies \:  \displaystyle \: a +  \frac{1}{a} = 2

 \implies \:  \displaystyle \:  \frac{ {a}^{2}  + 1}{a} = 2

 \implies \:  \displaystyle \:   {a}^{2}  + 1 = 2a

 \implies \:  \displaystyle \:   {a}^{2}  + 1 = 2a

 \implies \:  \displaystyle \:   {a}^{2}   -  2a + 1 = 0

 \implies \:  \displaystyle \:   {(a - 1)}^{2}    = 0

 \implies \:  \displaystyle \:   a - 1 = 0

 \implies \:   a  = 1

Hence

 \displaystyle \: {a}^{2020}  +  {a}^{ - 2020}

 =  \displaystyle \: {(1)}^{2020}  +  {(1)}^{ - 2020}

 = 1 + 1

 = 2

Similar questions