Math, asked by insharatahir227, 2 months ago

If A = {a,b,c,d} and B = {b,d,e,f}, then
prove that
(A U B) – (A ∩ B) = (A ∆ B)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\:A =  \:  \{a,b,c,d \}}

and

\red{\rm :\longmapsto\:B \:  =  \:  \{b,d,e,f \}}

\large\underline{\sf{To\:prove - }}

\red{\rm :\longmapsto\:(A\cup B) - (A\cap B) = A \:  \triangle \: B}

\large\underline{\sf{Solution-}}

Given that,

{\rm :\longmapsto\:A =  \:  \{a,b,c,d \}}

and

{\rm :\longmapsto\:B \:  =  \:  \{b,d,e,f \}}

So, Consider

\rm :\longmapsto\:A\cup B =  \{a,b,c,d,e,f \}

and

Now, Consider

\rm :\longmapsto\:A\cap B =  \{b,d \}

So,

\rm :\longmapsto\:(A\cup B) - (A\cap B) =  \{a,c,e,f \}

Now, we know that

\rm :\longmapsto\:A \: \triangle  \: B = (A - B)\cup (B - A)

So,

Consider

\rm :\longmapsto\:A - B =  \{a,c \}

Consider,

\rm :\longmapsto\:B - A =  \{e,f \}

Thus,

\rm :\longmapsto\:(A - B)\cup (B - A)

\rm \:  =  \:  \:  \{a,c,e,f \}

Therefore,

\rm :\longmapsto\:A \: \triangle  \: B  =  \:  \:  \{a,c,e,f \}

Hence, We concluded that

\red{\rm :\longmapsto\:(A\cup B) - (A\cap B) = A \:  \triangle \: B}

Additional Information :-

\boxed{ \rm{  {A}^{'} \cup  {B}^{'}  =  {(A\cap B)}^{'}}}

\boxed{ \rm{  {A}^{'} \cap  {B}^{'}  =  {(A\cup B)}^{'}}}

\boxed{ \rm{ A - B = A\cap  {B}^{'}}}

\boxed{ \rm{ A\cap  {A}^{'}  =  \phi \: }}

\boxed{ \rm{  {\phi }^{'}  = U}}

\boxed{ \rm{  {U}^{'}  = \phi }}

\boxed{ \rm{ A\cup  {A}^{'} = U}}

\boxed{ \rm{ A\cap  {A}^{'} =\phi }}

Similar questions