If A={a,b,c,d,e} , B={a,c,e,g} and C={b,e,f,g}, then verify that
i)A∩(B-C)=(A∩B)-(A∩C)
ii)A-(B∩C)=(A-B)∪(A-C)
will mark the answer as brainliest for sure
Answers
- we need to verify that
- i) A ∩(B-C) = (A ∩ B) - (A ∩ C)
- ii) A - (B ∩ C) = (A - B)∪(A - C)
- A = {a,b,c,d,e}
- B = {a,c,e,g}
- C = {b,e,f,g},
A , B and C are three sets as :-
- A = {a, b ,c, d, e}
- B = {a, c, e, g}
- C = {b ,e ,f, g}
i) A ∩(B - C) = (A ∩ B) - (A ∩ C)
➛ (B - C) = { g }
➛ A ∩(B - C) = { }
➛ (A ∩ B) = { a ,c , e }
➛ (A ∩ C) = { b, e, }
➛ (A ∩ B) - (A ∩ C) = { a , c }
Now,
⚘ Verification :-
➛ A ∩(B - C) = (A ∩ B) - (A ∩ C)
➛ ᛄ ≠ {a ,c}
So,
LHS ≠ RHS
ii) A - (B ∩ C) = (A - B)∪(A - C)
- A = {a, b ,c, d, e}
- B = {a, c, e, g}
- C = {b ,e ,f, g}
➛ (B ∩ C) = { e , g }
➛ A - (B ∩ C) = { a ,b ,c ,d }
➛ (A - B) = { b ,d }
➛ (A - C) = { a ,c ,d }
➛ (A - B) ∪ (A - C) = { a ,b , c ,d }
⚘ Verification :-
➛ A - (B ∩ C) = (A - B)∪(A - C)
➛ {a , b, c ,d } = { a ,b ,c ,d }
LHS = RHS
Hence,
- ❥ A ∩(B-C) ≠ (A ∩ B) - (A ∩ C)
- ❥ A - (B ∩ C) = (A - B)∪(A - C)
━━━━━━━━━━━━━━━━━━━━━━━━━
- A = {a, b, c, d, e}
- B = {a, c, e, g}
- C = {b, e, f, g}
i) A ᑎ (B - C) = (A ᑎ B) - (A ᑎ C)
ii) A - (B ᑎ C) = (A - B) ᑌ (A - C)
(i)
★ (B - C)
= {a, c, e, g} - {b, e, f, g}
= {a, c}
★ (A ᑎ B)
= {a, b, c, d, e} ᑎ {a, c, e, g}
= {a, c, e}
★ (A ᑎ C)
= {a, b, c, d, e} ᑎ {b, e, f, g}
= {b, e}
Left Side :-
A ᑎ (B - C)
= {a, b, c, d, e} ᑎ {a, c}
= {a, c}
Right Side :-
(A ᑎ B) - (A ᑎ C)
= {a, c, e} - {b, e}
= {a, c}
∵Left Side = Right Side
∴A ᑎ (B - C) = (A ᑎ B) - (A ᑎ C) [Hence Verified]
___________________________
(ii)
★ (B ᑎ C)
= {a, c, e, g} ᑎ {b, e, f, g}
= {e, g}
★ (A - B)
= {a, b, c, d, e} - {a, c, e, g}
= {a, b, d}
★ (A - C)
= {a, b, c, d, e} - {b, e, f, g}
= {a, c, d}
Left Side :-
A - (B ᑎ C)
= {a, b, c, d, e} - {e, g}
= {a, b, c, d}
Right Side :-
(A - B) ᑌ (A - C)
= {a, b, d} ᑌ {a, c, d}
= {a, b, c, d}
∵ Left Side = Right Side
∴ A - (B ᑎ C) = (A - B) ᑌ (A - C) [Hence Verified]