If A = {a,d}, B = {b, c, e} and C = {b, c, f}, then verify that (1) Ax (BUC) = (A>B) U (AC) (II) A x (B n C) = (A > B) n(A >C)
correct answer
I will mark as brilliant.
Answers
Step-by-step explanation:
If A = {1 , 2 , 3} , B = {3 , 4 , 5} , C = {4 , 6}
then, to find A X (B U C)
B U C = combination of unique elements of set B and C.
B U C = {3, 4 , 5, 6}
Using associative property of set:
A X (B U C) = (A X B ) U ( A X C)
To find cartesian products:
(i) A X B = {1 , 2 , 3 } X {3 , 4 , 5}
= {(1 , 3), (1 , 4), (1 , 5), (2 , 3), (2 , 4), (2 , 5), (3 , 3), (3 , 4), (3 , 5)}
(i) A X C = {1 , 2 , 3 } X {4 , 6}
= {(1 , 4), (1 , 6), (2 , 4), (2 , 6), (3 , 4), (3 , 6)}
(A X B ) U ( A X C) = {(1 , 3), (1 , 4), (1 , 5), (2 , 3), (2 , 4), (2 , 5), (3 , 3), (3 , 4), (3 , 5)} U {(1 , 4), (1 , 6), (2 , 4), (2 , 6), (3 , 4), (3 , 6)}
Ans = {(1 , 3), (1 , 4), (1 , 5), (1 , 6), (2 , 3), (2 , 4), (2 , 5), (2 , 6), (3 , 3), (3 , 4), (3 , 5), (3 , 6)}
Answer:
hope it help you.
thanks
Step-by-step explanation:
answer in attachment.
question no( ii)