Math, asked by agmail4179, 1 year ago

If a = [aij]3 x 3, such that , then 1 + log1/2det[adj(adj a)] is equal to

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{A is a square matrix of order 3}

\textbf{To find:}

\text{The value of }\;$1+\log_{\frac{1}{2}}det[adj(adjA)]$}

\textbf{Solution:}

\text{We know that,}

\textbf{If A is a square matrix  of order n, then}

\bf\,det[adj(adjA)]=[det(A)]^{(n-1)^2}

\text{Consider,}

1+\log_{\frac{1}{2}}det[adj(adjA)]

=1+\log_{\frac{1}{2}}[det(A)]^{(n-1)^2}

=1+\log_{\frac{1}{2}}[det(A)]^{(3-1)^2}

=1+\log_{\frac{1}{2}}[det(A)]^{2^2}

=1+\log_{\frac{1}{2}}[det(A)]^4

=1+4\,\log_{\frac{1}{2}}det(A)

\textbf{Answer:}

\bf\,1+\log_{\frac{1}{2}}det[adj(adjA)]=1+4\,\log_{\frac{1}{2}}det(A)

Similar questions