Math, asked by parshwasancheti2006, 3 months ago

If A also is a 2x2 order matrix with
1st row [1 4] and 2nd row (3 2] then
transpose of A is with​

Answers

Answered by pulakmath007
0

The required matrix is \displaystyle \sf= \displaystyle\begin{pmatrix} 1 & 3\\ 4 & 2\end{pmatrix}

Correct question : If A is a 2 × 2 order matrix with 1st row [1 4] and 2nd row [3 2] then transpose of A is

Given :

The matrix A is a 2 × 2 order matrix with 1st row [1 4] and 2nd row [3 2]

To find :

The transpose of A

Solution :

Step 1 of 2 :

Find the matrix A

Here the matrix A is a 2 × 2 order matrix with 1st row [1 4] and 2nd row [3 2]

So the matrix A is given by

\displaystyle \sf{ }A = \displaystyle\begin{pmatrix} 1 & 4\\ 3 & 2\end{pmatrix}

Step 2 of 2 :

Find transpose of A

We know that for any matrix A , transpose of A is obtained by interchanging its rows into columns or columns into rows.

Hence transpose of A

\displaystyle \sf{ = A }^{t}

\displaystyle \sf= \displaystyle\begin{pmatrix} 1 & 3\\ 4 & 2\end{pmatrix}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is

https://brainly.in/question/28455441

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

#SPJ3

Similar questions