If a & ß are the roots of x² – 2x + 4 = 0, than
the value of a^6+B^6 is k then the value
k/64
Answers
EXPLANATION.
α and β are the roots of the equation.
⇒ x² - 2x + 4 = 0.
As we know that,
Sum of the zeroes of the quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -(-2)/1 = 2.
Products of the zeroes of the quadratic equation.
⇒ αβ = c/a.
⇒ αβ = 4/1 = 4.
To find :
⇒ α⁶ + β⁶
As we know that,
By apply forceful factorization in the equation, we get.
⇒ α⁶ + β⁶ = (α³ + β³)(α³ + β³) - 2α³β³.
⇒ α⁶ + α³β³ + α³β³ + β⁶ - 2α³β³.
⇒ α⁶ + β⁶ + 2α³β³ - 2α³β³.
⇒ α⁶ + β⁶.
Hence proved.
This equation is correct.
Whenever you apply forceful factorization always check the equation, we get.
⇒ (α³ + β³)(α³ + β³) - 2α³β³ = k.
⇒ (α³ + β³)² = k.
⇒ [(α + β)(α² - αβ + β²)]² = k.
⇒ [(α + β){(α + β)² - 2αβ - αβ}]² = k.
⇒ [(α + β){(α + β)² - 3αβ}]² = k.
Put the value in the equation, we get.
⇒ [(2){(2)² - 3(4)}]² = k.
⇒ [(2){4 - 12}]² = k.
⇒ [2(-8)]² = k.
⇒ [-16]² = k.
⇒ 256 = k.
To find :
value of = k/64 = 256/64 = 4.
value of : k/64 = 4.
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
As, We know that ,
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀AND ,
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding value of (i) α⁶ + β⁶ :
As , We know that ,
As , We know that ,
⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding value of (ii) k/64 :
⠀⠀⠀⠀⠀⠀Given that,
- Value of k = α⁶ + β⁶ : 128