Math, asked by Answersneeded, 2 months ago

If a & ß are the roots of x² – 2x + 4 = 0, than
the value of a^6+B^6 is k then the value
k/64

Answers

Answered by amansharma264
196

EXPLANATION.

α and β are the roots of the equation.

⇒ x² - 2x + 4 = 0.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-2)/1 = 2.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 4/1 = 4.

To find :

⇒ α⁶ + β⁶

As we know that,

By apply forceful factorization in the equation, we get.

⇒ α⁶ + β⁶ = (α³ + β³)(α³ + β³) - 2α³β³.

⇒ α⁶ + α³β³ + α³β³ + β⁶ - 2α³β³.

⇒ α⁶ + β⁶ + 2α³β³ - 2α³β³.

⇒ α⁶ + β⁶.

Hence proved.

This equation is correct.

Whenever you apply forceful factorization always check the equation, we get.

⇒ (α³ + β³)(α³ + β³) - 2α³β³ = k.

⇒ (α³ + β³)² = k.

⇒ [(α + β)(α² - αβ + β²)]² = k.

⇒ [(α + β){(α + β)² - 2αβ - αβ}]² = k.

⇒ [(α + β){(α + β)² - 3αβ}]² = k.

Put the value in the equation, we get.

⇒ [(2){(2)² - 3(4)}]² = k.

⇒ [(2){4 - 12}]² = k.

⇒ [2(-8)]² = k.

⇒ [-16]² = k.

⇒ 256 = k.

To find :

value of = k/64 = 256/64 = 4.

value of : k/64 = 4.

                                                                                                                       

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by BrainlyRish
65

\qquad \qquad \mathbb{ GIVEN \:\:POLYNOMIAL \:\::\: }\sf x^2 - 2x + 6 \:\\\\

As, We know that ,

\qquad\underline {\boxed {\pmb{ \:\maltese \;Sum \:of \:zeroes \:\:\red {\:( \:\alpha \: + \beta )}\::}}}\\\\

\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{\:-(Cofficient \:of \:x\:)\:\:}{Cofficient \:of \:x^2 \:}

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

 \qquad \dashrightarrow \sf \bigg( \alpha +\:\beta \: \bigg) \:=\:\dfrac{-(\:Cofficient \:of \:x\:)}{Cofficient \:of \:x^2 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{-(\:-2\:)}{1 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \:+ \beta \: \bigg) \:=\:\dfrac{2\:}{1 \:}\\\\\qquad \dashrightarrow \sf \alpha \:+ \beta \:  \:=\:2\\\\\dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \:\alpha \:+ \beta \:  \:=\:2\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀AND ,

\qquad\underline {\boxed {\pmb{ \:\maltese \;Product \:of \:zeroes \:\:\red {\:( \:\alpha \:  \beta )}\::}}}\\\\

\qquad \dashrightarrow \sf \bigg( \alpha \:\beta \: \bigg) \:=\:\dfrac{\:Constant \:Term\:\:}{Cofficient \:of \:x^2 \:}

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \bigg( \alpha \:\beta \: \bigg) \:=\:\dfrac{\:Constant\:Term\:}{Cofficient \:of \:x^2 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:\dfrac{\:4\:}{1 \:}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:\cancel{\dfrac{\:4\:}{1 \:}}\\\\\qquad \dashrightarrow \sf \bigg( \alpha \: \beta \: \bigg) \:=\:4\\\\\dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \:\alpha \: \beta \:  \:=\:4\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding value of (i) α⁶ + β⁶ :

\qquad \dashrightarrow \sf \alpha ^6 + \beta ^6 \:\\\\

\qquad \dashrightarrow \sf (\alpha^2) ^3 + (\beta^2) ^3 \:\\\\

\qquad \dashrightarrow \sf (\alpha^2) ^3 + (\beta^2) ^3 \:\\\\

\qquad \dashrightarrow \sf (\alpha^2 + \beta^2) ^3 \:\\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{Algebraic \:Indentity \:\:: ( a + b )^3 \:= \:a^3 + b^3+ 3ab ( a + b ) }\bigg\rgroup \\\\

\qquad \dashrightarrow \sf (\alpha^2 + \beta^2) ^3 \:\\\\

\qquad \dashrightarrow \sf (\alpha^2 + \beta^2) ^3 = \alpha^6 + 3\alpha^2 \beta^2( \alpha^2 + \beta ^2 ) \:\\\\

\qquad \dashrightarrow \sf (\alpha^2 + \beta^2) ^3 = \alpha^6 + 3\alpha^2 \beta^2( \alpha^2 + \beta ^2 ) \:\\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{Algebraic \:Indentity \:\::  a^2 + b^2 \:= \: ( a + b )^2 - 2ab }\bigg\rgroup \\\\

\qquad \dashrightarrow \sf (\alpha^2 + \beta^2) ^3 = \alpha^6  + \beta^6 + 3\alpha^2 \beta^2( \alpha^2 + \beta ^2 ) \:\\\\

\qquad \dashrightarrow \sf \{ (\alpha + \beta)^2 - 2\alpha\beta \} ^3 = \alpha^6 +\beta^6+  3\alpha^2 \beta^2 \{(\alpha + \beta)^2 - 2\alpha\beta \} \:\\\\

\qquad \dashrightarrow \sf \{ (\alpha + \beta)^2 - 4\alpha\beta \} ^3 = \alpha^6 +\beta^6+ 3(\alpha\beta)^2 \{(\alpha + \beta)^2 - 2\alpha\beta \} \:\\\\

\qquad \dashrightarrow \sf \{ (2)^2 - 4(2) \} ^3 = \alpha^6 +\beta^6+3(\alpha\beta)^2 \{(\alpha + \beta)^2 - 2\alpha\beta \} \:\\\\

\qquad \dashrightarrow \sf \{ (2)^2 - 2(4) \} ^3 = \alpha^6 +\beta^6+ 3(\alpha\beta)^2 \{ (2)^2 - 2(4) \} \:\\\\

\qquad \dashrightarrow \sf \{ 4 - 8 \} ^3 = \alpha^6 +\beta^6+ 3(\alpha\beta)^2 (4 - 8 ) \:\\\\

\qquad \dashrightarrow \sf \{ -4 \} ^3 = \alpha^6  +\beta^6+3(4)^2 (-4 ) \:\\\\

\qquad \dashrightarrow \sf -64 = \alpha^6 + \beta^6+3(16) (-4 ) \:\\\\

\qquad \dashrightarrow \sf  \alpha^6 + \beta^6 = 3(16)(-4) + 64 \:\\\\

\qquad \dashrightarrow \sf  \alpha^6 + \beta^6 = 192 - 64 \:\\\\

\qquad \dashrightarrow \sf  \alpha^6 + \beta^6 = 128 \:\\\\

\dashrightarrow \underline{\boxed{\purple{\pmb{\frak{ \alpha^6 + \beta^6 = 128\: }}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding value of (ii) k/64 :

\qquad \dashrightarrow \sf \dfrac{k}{64}\:\\\\

⠀⠀⠀⠀⠀⠀Given that,

  • Value of k = α⁶ + β⁶ : 128

\qquad \dashrightarrow \sf \dfrac{k}{64}\:\\\\

\qquad \dashrightarrow \sf \dfrac{k}{64}\:=\:\dfrac{128}{64}\:\\\\

\qquad \dashrightarrow \sf \dfrac{k}{64}\:=\:\cancel {\dfrac{128}{64}}\:\\\\

\qquad \dashrightarrow \sf \dfrac{k}{64}\:=\:2\:\\\\

\dashrightarrow \underline{\boxed{\purple{\pmb{\frak{\dfrac{k}{64}\:=\:2 }}}}}\:\:\bigstar \\\\

\qquad \therefore \:\: \underline{\sf Hence , \: The \:value \:of \:\:k/64 \:\:is \:\pmb{\bf 2 }.}\\\\

Similar questions