Math, asked by adarshuttare, 9 months ago

. If a & b are the zeros of a polynomial px2

– 5x + q, then the value of p & q, if a + b = ab = 10,

are a) 5 & ½ c) 5 & 2 c) ½ & 5 d) 10 & 1​

Answers

Answered by mariya654
0

Answer:

GH to the world of the world of the world of the world of the world of the world of the world of the

Step-by-step explanation:

the bus fare for the world in the house of

Answered by brokendreams
0

The values of p and q are (c) \frac{1}{2}  and  5 respectively.

Step-by-step explanation:

We are given a quadratic equation,

px^{2} -5x+q=0

a and b are the zeroes of equation, a+b=10 and ab=10.

we have to find the value of p and q.

  • Formula used

General form of quadratic equation,

ax^{2} +bx+c=0

  1. sum of zeroes = \frac{-b}{a}
  2. product of zeroes =\frac{c}{a}

a is for coefficient of x^{2}  , b for coefficient of x  and c for constant.

  • Calculation for p and q.

we have,

px^{2} -5x+q=0

by comparing this equation with general equation we get the values of a, b and c;

a=p  ,  b=-5  and c=q.

so the sum and product of zeroes by coefficient formula,

sum of zeroes = \frac{-b}{a}                             product of zeroes =\frac{c}{a}

                         =\frac{-(-5)}{p}                                                      =\frac{q}{p}

                         =\frac{5}{p}

we have the sum and product of zeroes,

a+b=10 and ab=10.

comparing the given sum and product of zeroes with calculated sum and product of zeroes by formula,

Sum of zeroes =10                           Product of zeroes =10

          \frac{5}{p} =10                                                           \frac{q}{p}=10

         p=\frac{5}{10}                                                              q=10*p

         p=\frac{1}{2}                                                               q=10*\frac{1}{2}

                                                                                 q=5

In this way we get the values of p and q \frac{1}{2}  and  5 respectively.

Similar questions