Math, asked by anjalitiwary76, 1 year ago

if A and 3A-30 are acute angles such that sinA=cos(3A-30), find the value of tanA

Answers

Answered by amritstar
11
solution:

sin A= cos(3A-30) [Given]

=> sin A= sin [90°-(3A-30)]

=> A= 120 - 3A

=> 4A= 120°

=> A= 30°

Now, tan A [To find]

= tan 30°

 = \frac{1}{ \sqrt{3} }
_________________
Hope it helps
☺☺

#Amrit⭐
Answered by harendrachoubay
4

The value of \tan A is \dfrac{1}{\sqrt{3} }.

Step-by-step explanation:

We have,

\sin A=\cos (3A-30)

To find, the value of \tan A=?

\sin A=\sin [90-(3A-30)]

[ ∵ \sin A=\cos (90-A)]

A=90-(3A-30)

A=90-3A+30=120-3A

A+3A=120

⇒ A = \dfrac{120}{4}=30°

\tan A=\tan 30=\dfrac{1}{\sqrt{3} }

Hence,  the value of \tan A is \dfrac{1}{\sqrt{3} }.

Similar questions