Math, asked by lsahu9959, 3 months ago

if a and a+1 are the roots of the equation X2 - 7x+a=0, then a equal​

Answers

Answered by BlackAura
96

Answer:

Question

if a and a+1 are the roots of the equation X2 - 7x+a=0, then a equal

To Find

value of a

solution

The general form of quadratic equation is

{\sf{\underline{ax²+by +c=0}}}

if alpha (α) & Beta (β) are the zeros of the above quadratic equation then

 \sf{ \to  \color{green}\: Sum  \: Of \:  Zeros}

\sf{\to (β) +(α)= \frac{-b}{a}}

\sf{\to \color{magenta}{Product  \: of  \: Zeros}}

\sf{(β) ×(α) = \frac{c}{a}}

Now,

Given quadratic equation is

\sf{x²-7x+a= 0}

Here Alpha & Beta are α & α+1.

 \sf{ \to  \color{purple}\: sum  \: of \:  zeros}

 \sf{α+α+1= \frac{-(-7)}{1}} \\  \\  \sf{2 α+ 1 = 7} \\  \\  \sf{α = 3}

 \sf{ :\implies \: so \:  the \:  value \:  of \:  (α+1 ) \:  is  \: 4}

\sf{\to \color{orange}{Product  \: of  \: Zeros}}

\sf{:\implies α×(α+1)=\frac{a}{1}} \\ \\\sf{3×4=a} \\ \\ \sf{:\implies a= 12}

Therefore the value of a is 12.

____________________________

Answered by Casper608
5

\sf{ \to \color{lime}\:Question }

if a and a+1 are the roots of the equation X2 - 7x+a=0, then a equal

\sf{ \to \color{lime}\:to \: find }

value of a

\sf{ \to \color{cyan}\:Solution }

⊙ The general form of quadratic equation is

</h2><h2>{\sf{\underline{ax²+by +c=0}}}

ax²+by+c=0

╬ if alpha (α) & Beta (β) are the zeros of the above quadratic equation then

\sf{ \to \color{green}\: Sum \: Of \: Zeros} \\ →SumOfZeros

\sf{\to (β) +(α)= \frac{-b}{a}}→(β)+(α)= </h2><h2>a</h2><h2>−b

\sf{\to \color{cyan}{Product \: of \: Zeros}} \\ →ProductofZeros

\sf{(β) ×(α) = \frac{c}{a}}(β)×(α)=

a

c

Now,

Given quadratic equation is

\sf{x²-7x+a= 0}x²−7x+a=0

Here Alpha & Beta are α & α+1.

\sf{ \to \color{lime}\: sum \: of \: zeros} \\ →sumofzeros

</h2><h2>\begin{gathered} \sf{α+α+1= \frac{-(-7)}{1}} \\ \\ \sf{2 α+ 1 = 7} \\ \\ \sf{α = 3}\end{gathered} </h2><h2>α+α+1= </h2><h2>1

−(−7)

2α+1=7

α=3

\sf{ :\implies \: so \: the \: value \: of \: (α+1 ) \: is \: 4}:⟹sothevalueof(α+1)is \\  \\ </h2><h2>\sf{\to \color{orange}{Product \: of \: Zeros}}→ProductofZeros

\begin{gathered}\sf{:\implies α×(α+1)=\frac{a}{1}} \\ \\\sf{3×4=a} \\ \\ \sf{:\implies a= 12} \end{gathered}

:⟹α×(α+1)=

1

a

3×4=a

:⟹a=12

Therefore the value of a is 12.

Similar questions