Math, asked by bhakti007, 10 months ago

If a and ß are the zeroes of the quadratic polynomial 3x^2 + 7x - 20, then find the value of 1/alpha^2 + 1/beta^2

Answers

Answered by deepika3024
0

Answer:

answer is 85

step by step :

alpha +be a = 7

alphabeta = -18

alpha2 + beta2

(alpha+beta)2 -2*alpha*beta

= (7)2-2(-18)

= 85

Answered by Anonymous
5

⠀⠀⠀\huge\underline{ \mathrm{ \red{QueS{\pink{tiOn}}}}}

If a and ß are the zeroes of the quadratic polynomial 3x^2 + 7x - 20, then find the value of 1/alpha^2 + 1/beta^2

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanA{\green{TiOn }}}}}}}}

  \large\underline{ \underline{ \red{ \bold {Given}}}}

\bf\:p(x) =  {3x}^{2}  + 7x - 20 \\  \\

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

\bf\color{purple}{we \: need \: to \: find \: the \: value \: of \:  \frac{1}{ \alpha  {}^{2} } +  \frac{1}{ { \beta }^{2} }  } \\

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀

\bf\: firstly\: we \:find \:the\: zeroes \:of\:{ 3x}^{2}+7x-20

 \color{blue}{: \implies}   \bf{3 {x}^{2} + 7x - 20 }

\color{blue}{: \implies}  \bf{3 {x}^{2}  + 12x - 5x - 20} \\  \\ \color{blue}{: \implies}  \bf \: 3x(x + 4) - 5(x + 4) \\  \\\color{blue}{: \implies}  \bf \: (x + 4)(3x - 5) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{\color{blue}  \bf  x =  - 4 \: \:  \:  or  \:  \: \: x =  \frac{5}{3}}}

Now finding the value of \bf\:\frac{1}{\alpha{}^{2}}+\frac{1}{\beta{}^{2}}

   \bf\:   { \color{green}: \implies{ \alpha  =  - 4 \:  \: and \:  \:  \beta  =  \frac{5}{3} }} \\  \\  \bf\:   { \color{green}: \implies{ \frac{1   }{ \alpha  {}^{2}  } +  \frac{1}{ \beta  {}^{2} } }}

\bf\:   { \color{green}: \implies{ \frac{1}{ - 4 {}^{2} + } +   \frac{ \frac{1}{5 {}^{2} } }{3 {}^{2} } }} \\  \\\bf\:   { \color{green}: \implies{ \frac{1}{16} +  \frac{9}{25}  }} \\  \\\bf\:   { \color{green}: \implies{ \frac{25 + 144}{400} }} \\  \\   \bf\:   { \color{green}: \implies{ \frac{169}{400} }}

  \\  \\\bf\:   { \color{green}: \implies{ \underline{ \boxed{ \color{red}{{ \frac{169}{400} }} }}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions