Math, asked by shresth3356, 7 days ago

If a and are the zeroes of the quadratic polynomial f(x) = 3x² - 5x – 2, then a³ + B³ is​

Answers

Answered by amansharma264
8

EXPLANATION.

a and b are the zeroes of the quadratic polynomial.

⇒ f(x) = 3x² - 5x - 2.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ a + b = -(-5/3) = 5/3.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ ab = (-2/3).

To find : a³ + b³.

As we know that,

Formula of :

⇒ (x³ + y³) = (x + y)(x² - xy + y²).

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ (a³ + b³) = (a + b)(a² - ab + b²).

⇒ (a³ + b³) = (a + b)[(a + b)² - 2ab - ab].

⇒ (a³ + b³) = (a + b)[(a + b)² - 3ab].

Put the values in the equation, we get.

⇒ (a³ + b³) = (5/3)[(5/3)² - 3(-2/3)].

⇒ (a³ + b³) = (5/3)[25/9 + 2].

⇒ (a³ + b³) = (5/3)[43/9].

(a³ + b³) = 215/27.

Similar questions