Math, asked by neilsaju25, 1 day ago

if a and ß are the zeroes of the quadratic polynomial P(x)= 5x^2 + x-1 find the value of a^2+ ß^2.​

Answers

Answered by meenamahyavanshi82
2

Step-by-step explanation:

hope my ans is correct...

Attachments:
Answered by Tomboyish44
35

Answer:

11/25

Step-by-step explanation:

According to the question,

⇒ p(x) = 5x² + x - 1

Where,

  • a (Coefficient of x²) = 5
  • b (Coefficient of x) = 1
  • c (Constant term) = -1

Also, α and β are the zeroes of p(x).

We know that,

\sf \Longrightarrow Sum \ of \ the \ roots = - \dfrac{Coefficient \ of \ x}{Coefficient \ of \  x^2}

\sf \Longrightarrow \alpha + \beta = - \dfrac{Coefficient \ of \ x}{Coefficient \ of \  x^2}

\sf \Longrightarrow \alpha + \beta = - \dfrac{b}{a}

\sf \Longrightarrow \alpha + \beta = - \dfrac{1}{5}

We also know that,

\sf \Longrightarrow Product \ of \ the \ roots = \dfrac{Constant \ term}{Coefficient \ of \  x^2}

\sf \Longrightarrow \alpha \beta  = \dfrac{Constant \ term}{Coefficient \ of \  x^2}

\sf \Longrightarrow \alpha \beta  = \dfrac{c}{a}

\sf \Longrightarrow \alpha \beta  = \dfrac{-1}{5}

Finding the value of α² + β²:

\sf \Longrightarrow \alpha^{2} + \beta^{2}

Using the identity a² + b² = (a + b)² - 2ab we get,

\sf \Longrightarrow (\alpha+ \beta)^{2} - 2\alpha \beta

On substituting the values we've gotten for α + β and αβ we get,

\sf \Longrightarrow \Bigg\{-\dfrac{1}{5}\Bigg\}^{2} - \bigg\{2 \times -\dfrac{1}{5}\bigg\}

\sf \Longrightarrow \dfrac{1}{25} - \bigg\{-\dfrac{2}{5}\bigg\}

\sf \Longrightarrow \dfrac{1}{25} + \dfrac{2}{5}

On taking LCM we get,

\sf \Longrightarrow \dfrac{1 + 10}{25}

\sf \Longrightarrow \dfrac{\textsf{\textbf{11}}}{\textsf{\textbf{25}}}

∴ The value of α² + β² is 11/25.

Similar questions