Math, asked by PhantomYchaa, 10 months ago

if a and ß are the zeros of polynomial x³+6x+2 then ,(1/a+1/ß)=?​

Answers

Answered by BrainlyPopularman
6

ANSWER :

GIVEN :

A POLYNOMIAL x² + 6 x + 2 = 0 have two

roots.

{ \bold{ \underline{TO  \:  \: FIND} :  - }}  \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta } }} \\  \\  \\ { \bold{ \green{ \huge{ \underline {solution} :  - }}}} \\  \\ { \bold{ =  \frac{1}{ \alpha }   +  \frac{1}{ \beta } }} \\  \\ { \bold{ =  \frac{ \alpha  +  \beta }{ \alpha  \beta } }} \\  \\  { \bold{ \:   \: \: . \:  \: now \:  \: we \:  \: have \:  \: to \: find \:  - }} \\  \\ { \bold{ \:  \:  \:  \:  \: (1) \:  \: sum \:  \:  of \:  \: roots =  \alpha  +  \beta  =  -  \frac{b}{a}  =  - 6}} \\  \\ { \bold{ \:  \: \:  \:   \: (2) \:  \: product \:  \: of \:  \: roots =  \alpha  \beta  =  \frac{c}{a}  = 2 }} \\  \\ { \bold{ =  \frac{ \alpha  +  \beta }{ \alpha  \beta } }} \\  \\  { \bold{  = \frac{ - 6}{2} }} \\  \\ { \bold{ =  - 3}}

Similar questions