Math, asked by pranjalmaheshwari25, 4 months ago

If a and ß are the zeros of the polynomial f(x) = 2x² + 5x + k satisfying the relation
a²+ß² +aß =
 \frac{21}{4}
, then find the value of k for this to be possible.​

Answers

Answered by pinnintiumeshchandra
2

{a ^{2}  + \beta } ^{2}  + 2 \alpha  \beta  =  - 5  \div 2 \\  \alpha  \beta  + 21 \div 4 =  - 5 \div 2 \\  \alpha  \beta  =  - 31 \div 4 \\ k \div 2 =  - 31 \div 4 \\ k =  - 31 \div 2

Answered by Anonymous
3

Question :

If α and β are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation α²+ β²+αβ = ²¹/₄  , then find the value of k

Solution :

On comparing given polynomial 2x²+5x+k with ax²+bx+c , we get ,

➙ a = 2 , b = 5 , c = k

Sum of zeroes , α + β = - ᵇ/ₐ

⇒ α + β = - ⁵/₂  \pink{\bigstar}

Product of zeroes , αβ = ᶜ/ₐ

⇒ αβ = ᵏ/₂  \green{\bigstar}

Given that ,

\rm \alpha ^2 + \beta ^2 + \alpha \beta = \dfrac{21}{4}

\bullet\ \; \sf \red{(x+y)^2=x^2+y^2+2xy}\\\\ \bullet\ \; \sf \red{x^2+y^2= (x+y^2)-2xy}

:\implies \rm ( \alpha + \beta )^2-2 \alpha \beta + \alpha \beta = \dfrac{21}{4}

:\implies \rm ( \alpha + \beta )^2- \alpha \beta = \dfrac{21}{4}

Sub. values ,

:\implies \rm \bigg( - \dfrac{5}{2} \bigg)^2 - \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25}{4}- \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25-2k}{4} = \dfrac{21}{4}

:\implies \rm 25-2k=21

:\implies \rm 25-21 = 2k

:\implies \rm 4=2k

:\implies \rm 2=k

:\implies \rm k=2\ \; \blue{\bigstar}

Value of k is 2 .

Similar questions