Math, asked by bobbygoswami984, 3 months ago

If a and ẞ are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation a²+ ẞ²+aẞ =21/4
then find the value of k
:-)​

Answers

Answered by manya32150
4

Answer:

2

Step-by-step explanation:

p(x)=2x²+5x+k

a=2,b=5 and c=k

a+β=-b/a

a+β=-5/2

squaring both sides,

(a+β)²=(-5/2)²

a²+β²+2aβ=25/4

a²+β²=25/4-2aβ ----1

aβ=c/a

aβ=k/2-----------2

by substituting the values of 1 and 2 ,

a²+β²+aβ=21/4

25/4-2aβ+aβ=21/4

25/4-21/4-aβ=0

4/4=aβ

1=k/2

∴k=2

Answered by Anonymous
18

Question :

If α and β are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation α²+ β²+αβ = ²¹/₄  , then find the value of k

Solution :

On comparing given polynomial 2x²+5x+k with ax²+bx+c , we get ,

➙ a = 2 , b = 5 , c = k

Sum of zeroes , α + β = - ᵇ/ₐ

⇒ α + β = - ⁵/₂  \pink{\bigstar}

Product of zeroes , αβ = ᶜ/ₐ

⇒ αβ = ᵏ/₂  \green{\bigstar}

Given that ,

\rm \alpha ^2 + \beta ^2 + \alpha \beta = \dfrac{21}{4}

\bullet\ \; \sf \red{(x+y)^2=x^2+y^2+2xy}\\\\ \bullet\ \; \sf \red{x^2+y^2= (x+y^2)-2xy}

:\implies \rm ( \alpha + \beta )^2-2 \alpha \beta + \alpha \beta = \dfrac{21}{4}

:\implies \rm ( \alpha + \beta )^2- \alpha \beta = \dfrac{21}{4}

Sub. values ,

:\implies \rm \bigg( - \dfrac{5}{2} \bigg)^2 - \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25}{4}- \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25-2k}{4} = \dfrac{21}{4}

:\implies \rm 25-2k=21

:\implies \rm 25-21 = 2k

:\implies \rm 4=2k

:\implies \rm 2=k

:\implies \rm k=2\ \; \blue{\bigstar}

Value of k is 2 .

Answered by Anonymous
2

Question :

If α and β are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation α²+ β²+αβ = ²¹/₄  , then find the value of k

Solution :

On comparing given polynomial 2x²+5x+k with ax²+bx+c , we get ,

➙ a = 2 , b = 5 , c = k

Sum of zeroes , α + β = - ᵇ/ₐ

⇒ α + β = - ⁵/₂  \pink{\bigstar}

Product of zeroes , αβ = ᶜ/ₐ

⇒ αβ = ᵏ/₂  \green{\bigstar}

Given that ,

\rm \alpha ^2 + \beta ^2 + \alpha \beta = \dfrac{21}{4}

\bullet\ \; \sf \red{(x+y)^2=x^2+y^2+2xy}\\\\ \bullet\ \; \sf \red{x^2+y^2= (x+y^2)-2xy}

:\implies \rm ( \alpha + \beta )^2-2 \alpha \beta + \alpha \beta = \dfrac{21}{4}

:\implies \rm ( \alpha + \beta )^2- \alpha \beta = \dfrac{21}{4}

Sub. values ,

:\implies \rm \bigg( - \dfrac{5}{2} \bigg)^2 - \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25}{4}- \dfrac{k}{2} = \dfrac{21}{4}

:\implies \rm \dfrac{25-2k}{4} = \dfrac{21}{4}

:\implies \rm 25-2k=21

:\implies \rm 25-21 = 2k

:\implies \rm 4=2k

:\implies \rm 2=k

:\implies \rm k=2\ \; \blue{\bigstar}

Value of k is 2 .

Similar questions