If a and ẞ are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation a²+ ẞ²+aẞ =21/4
then find the value of k
:-)
Answers
Answer:
2
Step-by-step explanation:
p(x)=2x²+5x+k
a=2,b=5 and c=k
a+β=-b/a
a+β=-5/2
squaring both sides,
(a+β)²=(-5/2)²
a²+β²+2aβ=25/4
a²+β²=25/4-2aβ ----1
aβ=c/a
aβ=k/2-----------2
by substituting the values of 1 and 2 ,
a²+β²+aβ=21/4
25/4-2aβ+aβ=21/4
25/4-21/4-aβ=0
4/4=aβ
1=k/2
∴k=2
Question :
If α and β are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation α²+ β²+αβ = ²¹/₄ , then find the value of k
Solution :
On comparing given polynomial 2x²+5x+k with ax²+bx+c , we get ,
➙ a = 2 , b = 5 , c = k
Sum of zeroes , α + β = - ᵇ/ₐ
⇒ α + β = - ⁵/₂
Product of zeroes , αβ = ᶜ/ₐ
⇒ αβ = ᵏ/₂
Given that ,
Sub. values ,
Value of k is 2 .
Question :
If α and β are the zeros of the polynomial p(x) = 2x² + 5x + k satisfying satisfying the relation α²+ β²+αβ = ²¹/₄ , then find the value of k
Solution :
On comparing given polynomial 2x²+5x+k with ax²+bx+c , we get ,
➙ a = 2 , b = 5 , c = k
Sum of zeroes , α + β = - ᵇ/ₐ
⇒ α + β = - ⁵/₂
Product of zeroes , αβ = ᶜ/ₐ
⇒ αβ = ᵏ/₂
Given that ,
Sub. values ,
Value of k is 2 .