Math, asked by maninderpanjeta33, 2 months ago

If a and ß are zeroes of
polynomial 2x2-3x+5, find
value of a/B + B/a​

Answers

Answered by amansharma264
9

EXPLANATION.

α and β are the zeroes of the polynomial.

⇒ 2x² - 3x + 5.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-3)/2 = 3/2.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 5/2.

To find :

⇒ α/β + β/α.

α² + β²/αβ.

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in equation, we get.

⇒ [(α + β)² - 2αβ]/αβ.

⇒ [(3/2)² - 2(5/2)]/(5/2).

⇒ [9/4 - 5]/(5/2).

⇒ [9 - 20/4]/(5/2).

⇒ [-11/4/5/2].

⇒ -11/4 x 2/5.

⇒ -11/10.

α/β + β/α = -11/10.

                                                                                                                       

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by TheBrainlistUser
7

\large\bf\underline\red{Question \:  :- }

If a and ß are zeroes of polynomial 2x2-3x+5, find

value of a/B + B/a ?

\large\bf\underline\red{Answer \:  :- }

We know that,

a and ß are the zeros of 2x² - 3x + 5 polynomial.

We have to find :

a/ß + ß/a

First finding sum of the zeros

\longmapsto\sf{ \alpha  +  \beta  =  \frac{ -b}{ a } } \:  \:  \:  \:  \:  \:  \:  \\  \\ \longmapsto\sf{ \alpha  +  \beta  =  \frac{  - (- 3)}{2} } \\  \\ \longmapsto\sf{ \alpha  +  \beta  =  \frac{3}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now we find product of the zeros

\longmapsto\sf{ \alpha  \beta  =  \frac{c}{a} =  \frac{5}{2}  } \\

Using formula to solve :

\bigstar\bf{ \:  \: (x {}^{2} + y {}^{2})  =  (x + y) {}^{2} - 2xy }

By formula putting values

\longmapsto\sf{ \frac{[( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  ]}{ \alpha  \beta } } \\  \\ \longmapsto\sf{ \frac{[( \frac{3}{2} ) {}^{2}  - 2( \frac{5}{2} ) ]}{ \frac{5}{2} } } \\  \\  \longmapsto\sf{ \frac{ \frac{9}{4} - 5 }{ \frac{5}{2} } } \\  \\ \longmapsto\sf{ \frac{ \frac{9 - 20}{4} }{ \frac{5}{2} } } \\  \\ \longmapsto\sf{ \frac{ - 11}{4}  \times  \frac{2}{5}  =  \frac{ - 22}{20} }

{\large{\underline{\boxed{\leadsto{\bf{\red{ \:  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  =  \frac{ - 11}{10} }}}}}}}

________________________________

Similar questions