Math, asked by reethusingh, 1 year ago

if A and B are acute angle satisfying 3sin^2A + 2 sin^2 B=1 and 3 sin 2A = 2 Sin 2B then cos(A+2B)=?​

Answers

Answered by rameshwarm2004
4

Step-by-step explanation:

answer is the above image

Attachments:
Answered by prachikalantri
0

Let 0 < A,B < \frac{n}{2} satisfying the equation

3sin^2A+2sin^2B=1 & 3sin2A-2sin2B=0 then

A+2B is equal to

3sin^2 A +2sin^2 B =1

3sin^2 A=1-2sin^2B

B sinA=\frac{cos2B}{Sin A} .....(1)

3sin2A-2sin2B=0

3[2sinA.cosA]-2sin2B=0

3sinA=\frac{sin2B}{cosA} .....(2)

\frac{sin2B}{cosA}=\frac{cos2B}{sinA}

\frac{sin2B}{cos2B}=\frac{cosA}{sinA}    \therefore \frac{1}{tanA}  tan2B.tanA=1

tan(A+2B)=\frac{tanA+tan 2B}{1-tanA.tan2B}

tan(A+2B)=\frac{tanA+tan 2B}{0}

A+2B=\frac{r}{2}

#SPJ2

Similar questions