Math, asked by shamyukthasenuma, 10 months ago

If A and B are acute angle such that tan A=1/2
tan B=1/3 and tan (A + B) = tanA + tanB/1-tanA tanB,find A+B​

Answers

Answered by anushadaram
0

tan(A+B)=(1/2+1/3)÷(1-1/2)

=(5/6)÷(1/2)

=10/6

=5/3

A+B=tan^-1(5/3)

Answered by chaitragouda8296
6

Given :

tan \:  \: a \:  =  \frac{1}{2} \\   \\ tan \:  \: b \:  =  \frac{1}{3}  \\  \\ tan \: (a + b) =  \frac{tan \: a \:  +  \: tan \: b}{1 - tan \: a \: . \:  \: tan \: b}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \frac{1}{2}  +  \frac{1}{3} }{1 -  \frac{1}{2}  \times  \frac{1}{3} }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ \frac{3 + 2}{6} }{1 -  \frac{1}{6} }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ \frac{5}{6} }{ \frac{ 6 - 1}{6} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ \frac{5}{6} }{ \frac{5}{6} }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{5}{6}  \times  \frac{6}{5} \\  \\tan \: (a + b)= 1 \\  \\ tan \: (a + b)= tan \:  \: 45 \\  \\ tan \: gets \: cancelled \: on \: both \: sides \\  \\ a  \: + \:  b \:  = 45

Hope it's helpful .......

Please mark it as Brainliest ......

Similar questions