Math, asked by tonni78, 1 year ago

if a and b are acute angle such that

tan a = m / m+1 and tan b = 1/ 2m +1 , prove that a + b = π/4 .​

Answers

Answered by Anonymous
6

รσℓµƭเσɳ

tan ( a+b ) = tan a + tan b/ 1- tan a tan b

Putting the value of tan a and tan b .

tan ( a+b ) =( m / m+1 + 1/ 2m + 1 )/ 1 - (m/ m+1 )(1/2 m+1)

tan ( a+b ) = 2m² +m +m +1/ 2m² + 3m +1 - m

tan (a+b ) = 2m² +2m +1/ 2m²+2m +1

tan ( a+b) = 1

tan ( a+b) = tan π/4

a+b = π/4

ђєภςє קг๏שє๔

Answered by thekings
4

Step-by-step explanation:

 \tan( \alpha )  =  \frac{x}{x + 1}  \\  \\  \\  \tan( \beta )  =  \frac{1}{2x + 1}  \\  \\  \\  \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha )  \tan( \beta ) }  \\  \\  \\  =  \frac{ \frac{x}{x + 1} +  \frac{1}{2x + 1}  }{1 -  \frac{x}{(x + 1)(2x + 1)} }  \\  \\  \\  =  \frac{ \frac{2 {x}^{2} + x + x + 1 }{(x + 1)(2x + 1)} }{ \frac{ 2{x}^{2}  + 2x + x + 1 - x}{(x + 1)(2x + 1)} }  \\  \\  \\  =  \frac{2 {x}^{2}  + 2x + 1}{2 {x}^{2}  + 2x + 1}  \\  \\  \\  = 1 \\  \\  \\ but \:  \tan( \frac{\pi}{4} )  = 1 \\  \\  \\  \alpha  +  \beta  =  \frac{\pi}{4}

THANKS

Similar questions