If A and B are acute angles, sinA = 3/5, cosB = 12/13,
find cos (A+B)
Answers
SOLUTION:-
cos (A + B) = cosAcosB - sinAsinB
From the formula of cos (A + B), the value of sinA and cosA are given in the question.
We need the value of sinB and cosA.
We know that,
=>sin ² B = 1 - cos ² B
=>sin ² B = 1 - (12/13)²
=>sin ² B = 1 - 144/169
=>sin ² B = (169 - 144)/169
=>sin ² B = 25/169
=>sin ² B = (5/13)² --------> sinB = 5/13
=>cos ² A = 1 - sin ² A
=>cos ² A = 1 - (3/5)²
=>cos ² A = 1 - 9/25
=>cos ² A = (25 - 9)/25
=>cos ² A = 16 / 25
=>cos ² A = (4/5)² --------> cosA = 4 / 5
Putting the values of cosA, cosB, sinA and sinB in the formula of cos (A+B), we get,
cos (A + B) = (4/5) x (12/13) - (3/5) x (5/13)
cos (A + B) = (4/5) x (12/13) - (3/5) x (5/13)
cos (A + B) = (48 / 65) - (15 / 65)
cos (A + B) = (48 - 15) / 65
cos (A + B) = 33 / 65
Hence, the value of cos(A+B) is 33/65.