If A and B are acute angles such that
A + B and A - B satisfy the equation
tan- 4 tan 0+1=0,
(A) A=1/4
(B) A=76
(C) B=1/4
(D) B = 1/6
Answers
Answered by
0
Answer:
As tan(A+B),tan(A−B) roots of tan
2
θ−4tanθ+1=0
Gives
tan(A+B)+tan(A−B)=4 ...(1)
tan(A+B).tan(A−B)=1 ...(2)
tan((A+B)+(A−B))=
1−tan(A+B).tan(A−B)
tan(A+B)+tan(A−B)
tan2A=
1−1
4
⇒2A=
2
π
⇒A=
4
π
Now from (1)
tan(A+B)+tan(A−B)=4
⇒
1−tanAtanB
tanA+tanB
+
1+tanAtanB
tanA−tanB
=4
⇒
1−tanB
1+tanB
+
1+tanB
1−tanB
=4
⇒
1−tan
2
B
(1+tanB)
2
+(1−tanB)
2
=4
⇒
1−tan
2
B
1+tan
2
B+2tanB+1+tan
2
B−2tanB
=4
⇒
1−tan
2
B
1+tan
2
B
=4⇒
cos2B
1
=2⇒cos2B=
2
1
⇒2B=
3
π
⇒B=
6
π
I think it's helps to you...
select me as a brainlist
Similar questions