Math, asked by ofovwesefia, 9 months ago

if a and b are acute angles, such that sin a = 3/5 and tan b = 5/12. find cos (a+b)

Answers

Answered by bs3507715
0

Step-by-step explanation:

5 The simple interest on a sum of money for 2 years at 12% per annum is 1380. Fi

(i) the sum of money.

(ii) the compound interest on this sum for one year payable half-yearly at the same

rate.

Answered by Anonymous
3

Solution:-

Given

 \rm \:  \sin A  = \frac{3}{5}

 \rm \:  \tan \: B =  \frac{5}{12}

Now, take

 \rm \:  \sin A  = \frac{3}{5}  =  \frac{p}{h}

 \rm \: p = 3 \:  \: b \:  = x \:  \: and \: h = 5

Using phythogoeros theorem

 \rm {h}^{2}   =  {p}^{2}  + b {}^{2}

 \rm \: (5) {}^{2}  = (3) {}^{2}  + x {}^{2}

 \rm \: 25 = 9 +  {x}^{2}

 \rm \: 25 - 9 = x {}^{2}

 \rm \:  {x}^{2}  = 16

 \rm \: x = 4

 \rm \: b = 4

Now , we get

 \rm \:  \cos(A)  =  \frac{b}{h}  =  \frac{4}{5}

\rm \:  \sin A  = \frac{3}{5}  =  \frac{p}{h}

Now , take

 \rm \:  \tan \: B =  \frac{5}{12}  =  \frac{p}{b}

 \rm \: p = 5 \:  \:  \: b \:  =  \: 12 \:  \: and \:  \: h = x

Using phythogoeros theorem

\rm {h}^{2}   =  {p}^{2}  + b {}^{2}

 \rm \:  {x}^{2}  = (5) {}^{2}  + (12) {}^{2}

 \rm \:  {x}^{2}  = 25 + 144

 \rm \:  {x}^{2}  = 169

 \rm \: x = 13

 \rm \: h = 13

So , we get

 \rm \sin B =  \frac{p}{h}  =  \frac{5}{13}

 \rm \:  \cos B  =  \frac{b}{h }  =  \frac{12}{13}

Now take

 \rm \:  \cos(a + b)

\rm \:  \cos( A+ B)  =  \cos(A)    \cos(B)   -  \sin(A)  \sin(B)

So put the value we get

 \rm \:  \frac{4}{5}   \times   \frac{12}{13}  -  \frac{3}{5}  \times  \frac{5}{13}

 \rm \:  \frac{48}{65}  -  \frac{15}{65}

 \rm \:  \frac{33}{65}

Answer

 \to\rm \:  \frac{33}{65}

Similar questions