Math, asked by anustfu, 2 months ago

If A and B are acute angles such that tan ( A + B ) = √3 and
tan ( A – B ) = 1/(√3) then
pls answer this

Answers

Answered by xSoyaibImtiazAhmedx
0

Answer:

Given,

  • tan ( A + B ) = √3
  • tan ( A – B ) = 1/(√3)

 \small{And \:  \:  {0}^{0}  \leqslant A \: and \: B \leqslant  {90}^{0} }

Now,

tan ( A + B ) = √3

 \implies tan ( A + B ) = tan \:  {60}^{0}

 \implies \:  A + B =  {60}^{0}  -  -  -  -  - (1)

And

tan ( A – B ) = 1/(√3)

 \implies \: tan ( A – B ) = tan \:  {30}^{0}

 \implies \: A – B  \: = {30}^{0}  -  -  -  -  - (2)

  \large\bold{ \underline{Now, (1) + (2)}}

 \implies \: A+B+A-B \:  =  {60}^{0}  +  {30}^{0}

 \implies \: 2A =  {90}^{0}

 \implies \:  \bold{ \boxed{ \color{blue}{A =  {45}^{0} }}}

\large\bold{ \underline{ \mathtt{Putting  \:  \: the  \:  \: value  \: of \:  A \:  \:  in  \: (1)}}}

 \implies \: B \:  =  {60}^{0}  - {45}^{0}

\implies \bold{ \boxed{ \mathtt{ \color{blue}{ \: B \:  =  {15}^{0} }}}}

Similar questions