Math, asked by kalavathitharlada, 2 months ago

if a and b are any two rational numbers and if (√3+√2)/(√3-√2) = a+b√6 ,then find a and b​

Answers

Answered by ImperialGladiator
2

Answer:

  • a = 5
  • b = 2

Explanation:

Given,

 \implies \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}

Taking L. H. S.

 \longrightarrow \:  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

Rationalising the denominator,

 \longrightarrow \:  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }

 \longrightarrow \:  \dfrac{( \sqrt{3} +  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}{( \sqrt{3} -  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}

{{ \longrightarrow \:  \dfrac{ \sqrt{3}  (\sqrt{3} +  \sqrt{2} ) +  \sqrt{2} ( \sqrt{3}   +  \sqrt{2}) }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  } } \:  \:  \:  \:  \:  \: \:  \{ \because \: (a - b)(a + b) =  {a}^{2} -  {b}^{2}  \}}

 \longrightarrow \:  \dfrac{ {( \sqrt{3}) }^{2}  +  \sqrt{6} +  \sqrt{6}   +  {( \sqrt{2} )}^{2} }{3 - 2}

 \longrightarrow \:  \dfrac{3 + 2 \sqrt{6} + 2 }{1}

 \longrightarrow \: 5 + 2 \sqrt{6}

On comapring with R. H. S. i.e., a + b√6

\implies \: 5 + 2 \sqrt{6}  = a + b \sqrt{6}

\implies \: a = 5 \: { \rm \: and} \: b = 2

Similar questions