Math, asked by kavithaacmanu1663, 10 months ago

If a and b are different matrices satisfying a3 = b3 and a2b = b2a, then det (a2 + b2) is

Answers

Answered by Agastya0606
3

Given: a and b are different matrices satisfying a³ = b³ and a²b = b²a

To find: det (a² + b²)

Solution:

  • Now we have given :

                a³ = b³

  • It can be written as: a³ - b³ = 0

                a²b = b²a

  • It can be written as: a²b - b²a = 0
  • Now we know that (a² + b²)(a - b) = a³ - a²b + ab² - b³
  • So putting the values in it, we get:

                a³ - a²b + ab² - b³ = 0

  • That means :

                (a² + b²) is a zero divisor.

                det(a² + b²) = 0

Answer:

              So the determinant is 0.

Similar questions