Math, asked by gchethanreddy7586, 7 months ago

if a and b are events such that p(AuB)=5/6,p(A^)=(1/4),p(B)=1/3 then A and B are

Answers

Answered by Unni007
11

Given,

\longrightarrow\sf{P(A')=\dfrac{1}{4}\implies P(A)=1-\dfrac{1}{4}=\bold{\dfrac{3}{4}}}

\longrightarrow\sf{P(B)=\dfrac{1}{3}}

\longrightarrow\sf{P(A\cup B)=\bold{\dfrac{5}{6}}}

We know ,

\boxed{\bold{\sf{P(A\cap B)=P(A)+P(B)-P(A\cup B)}}}

\implies\sf{P(A \cap B)=\dfrac{3}{4}+\dfrac{1}{3}-\dfrac{5}{6}}

\implies\sf{P(A \cap B)=\dfrac{9}{12}+\dfrac{4}{12}-\dfrac{10}{12}}

\implies\sf{P(A \cap B)=\dfrac{9+4-10}{12}}

\implies\sf{P(A \cap B)=\dfrac{3}{12}}

\implies\sf{P(A \cap B)=\dfrac{1}{4}}

______________________________

\sf{P(A)\times P(B)=\dfrac{3}{4}\times \dfrac{1}{3}}

\implies\sf{P(A)\times P(B)=\dfrac{3}{12}}

\implies\sf{P(A)\times P(B)=\dfrac{1}{4}}

\implies\sf{P(A)\times P(B)=P(A\cap B)}

∴ A and B are independent but not equally likely.

Answered by nikhil1169
0

Answer:

They are independent

P(A) × P(B)= P(A intersection B)

Similar questions