Math, asked by Queen3718, 2 months ago



If a and b are integers and a<b, b not congruent to 1 then compare a-1/b-1 , a+b/b+1.

Answers

Answered by Anonymous
36

 \bf \frac{a - 1}{b - 1} \:  -  \frac{a + 1}{b + 1} \:

 \bf =  \frac{(a - 1)(b + 1) - (a + 1)b - 1)}{(b - 1)(b \times + 1)}

  \bf=  \frac{(ab - b + a - 1) - (ab + b - a - 1)} { {b}^{2}  - 1}

  \bf=  \frac{ab - b + a - 1 - ab - b + a + 1}{ {b}^{2}  - 1}

 \bf =  \frac{2a - 2b} { {  {b}^{2} - 1 }  } \:

 \bf =  \frac{2(a - b)}{ {b}^{2}  - 1}...(1)

Now a < b

 \thereforea - b <0

also b² - 1 > 0 b is not congruent 1

 \bf\frac{2(a - b)}{ {b}^{2}  - 1} &lt; 0...(2)

  \bf\frac{a - 1}{ab - 1} -  \frac{a + 1}{b + 1} &lt; 0...from(1)(2)

 \bf =  \frac{a - 1}{b - 1} &lt;  \frac{a + 1}{b + 1}

Answered by llToxicQueenll
6

 \bf \frac{a - 1}{b - 1} \:  -  \frac{a + 1}{b + 1} \:

 \bf =  \frac{(a - 1)(b + 1) - (a + 1)b - 1)}{(b - 1)(b \times + 1)}

  \bf=  \frac{(ab - b + a - 1) - (ab + b - a - 1)} { {b}^{2}  - 1}

  \bf=  \frac{ab - b + a - 1 - ab - b + a + 1}{ {b}^{2}  - 1}

 \bf =  \frac{2a - 2b} { {  {b}^{2} - 1 }  } \:

 \bf =  \frac{2(a - b)}{ {b}^{2}  - 1}...(1)

Now a < b

 \thereforea - b <0

also b² - 1 > 0 b is not congruent 1

 \bf\frac{2(a - b)}{ {b}^{2}  - 1} &lt; 0...(2)

  \bf\frac{a - 1}{ab - 1} -  \frac{a + 1}{b + 1} &lt; 0...from(1)(2)

 \bf =  \frac{a - 1}{b - 1} &lt;  \frac{a + 1}{b + 1}

Similar questions