Math, asked by pgracevolau1272, 1 year ago

If a and b are irrotational prove that a b is solenoidal

Answers

Answered by Tusharch8911
10
Hey dear,

Curl(A→)=0Curl⁡(A→)=0 and Curl(B→)=0Curl⁡(B→)=0

So, to prove solenoidal the divergence must be zero i.e.:

=∇⋅(E→×H→)=∇⋅(E→×H→)

We know,

∇⋅(E→×H→)=H→⋅(∇×E→)−E→⋅(∇×H→)=H→⋅0−E→⋅0=0∇⋅(E→×H→)=H→⋅(∇×E→)−E→⋅(∇×H→)=H→⋅0−E→⋅0=0

Therefore, E→×H→E→×H→ is solenoidal.

Hope it will help u...
Answered by amirgraveiens
5

Proved below.

Step-by-step explanation:

Given:

Here, a and b are irrotational.  

To prove:

a b is solenoidal.

Proof:

By problem  \triangledown \times A=0 and \triangledown \times B =0, it is as follows

B \cdot (\triangledown \times A) = 0                              [1]

A \cdot (\triangledown \times B) = 0                               [2]

Subtracting Eq (2) from (1), we get

 B \cdot (\triangledown \times A)-A \cdot (\triangledown \times B) = 0      [3]

Now,  

 \triangledown \cdot (A\times B)=B \cdot (\triangledown \times A)-A \cdot (\triangledown \times B) = 0

Therefore,  

 \triangledown \cdot (A\times B)= 0                 [from (3)]

so that (A\times B) is a solenoid.

Hence proved.

Similar questions