Math, asked by karthikeyan5149, 3 months ago

If A and B are orthogonal matrices then prove that AB and BA are also orthogonal​

Answers

Answered by mathdude500
8

\green{\large\underline{\sf{Solution-}}}

Given that

A is Orthogonal matrix.

\bf :\longmapsto\: {AA}^{T} = I -  -  - (1)

B is Orthogonal matrix.

\bf :\longmapsto\: {BB}^{T} = I -  -  - (2)

1. We have to prove that AB is Orthogonal.

So, it is sufficient to prove that

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\red{\boxed{ \quad \sf \: (AB) {(AB)}^{T} = I \quad}}}

Consider,

\rm :\longmapsto\:(AB) {(AB)}^{T}

 \:  \: \rm  =  \:  \: AB( {B}^{T} {A}^{T})

 \:  \: \rm  =  \:  \: A(B{B}^{T}) {A}^{T}

 \:  \: \rm  =  \:  \: A(I) {A}^{T}

 \:  \: \rm  =  \:  \: A {A}^{T}

 \:  \: \rm  =  \:  \:I

\bf\implies \:AB( {AB}^{T}) = I

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \: \bf\implies \:AB \: is \: orthogonal}

2. Now, we have to prove that BA is Orthogonal.

So, it is sufficient to show that

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\red{\boxed{ \quad \sf \: (BA) {(BA)}^{T} = I \quad}}}

Consider,

\rm :\longmapsto\:BA( {BA)}^{T}

 \:  \: \rm  =  \:  \: BA( {A}^{T}  {B}^{T})

 \:  \: \rm  =  \:  \: B(A{A}^{T}){B}^{T}

 \:  \: \rm  =  \:  \: B(I){B}^{T}

 \:  \: \rm  =  \:  \: B{B}^{T}

 \:  \: \rm  =  \:  \: I

\bf\implies \:BA( {BA}^{T}) = I

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \: \bf\implies \:BA \: is \: orthogonal}

Additional Information :-

\boxed{ \sf \:  {(A + B)}^{T} =  {A}^{T} +  {B}^{T}}

\boxed{ \sf \:  {(A  -  B)}^{T} =  {A}^{T}  -   {B}^{T}}

\boxed{ \sf \: ( {xA)}^{T} = x {A}^{T} \: where \: x \: is \: real \: number}

\boxed{ \sf \:  {(AB)}^{T}  =  {B}^{T}  {A}^{T} }

\boxed{ \sf \:  {( {A}^{T}) }^{T} = A}

\boxed{ \sf \: A \: is \: symmetric \implies \:  {A}^{T} = A}

\boxed{ \sf \: A \: is \: skew - symmetric \implies \:  {A}^{T} =  - A}

\boxed{ \sf \: A \: is \: idempotent \implies \:  {A}^{2} =   A}

\boxed{ \sf \: A \: is \: involutary \implies \:  {A}^{2} =   I}

Similar questions