Math, asked by satvikyadav4433, 1 year ago

If →a and →b are perpendicular vectors |→a+→b|=13 and |→a|=5, find the value of |→b|.

Answers

Answered by MaheswariS
2

Answer:

\text{The value of $|\vec{b}|$ is 12}

Explanation:

Given:

|\vec{a}|=5\\\\|\vec{a}+\vec{b}|=13

\text{since $\vec{a}$ and $\vec{b}$ are perpendicular, }\vec{a}.\vec{b}=0

We know that,

|\vec{a}+\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2+2\,\vec{a}.\vec{b}

\implies\;13^2=5^2+|\vec{b}|^2+2(0)

\implies\;169=25+|\vec{b}|^2

\implies\;|\vec{b}|^2=144

\implies\;|\vec{b}|=\sqrt{144}

\implies|\vec{b}|=12

Similar questions