Math, asked by fatimanoorah, 6 months ago

if a and b are rational number 8 then find the value of a and b
√3+√2/√3-√2=a+b√6​

Answers

Answered by TheValkyrie
5

Answer:

\bigstar{\bold{Value\:of\:a=5}}

\bigstar{\bold{Value\:of\:b=2}}

Step-by-step explanation:

\Large{\underline{\rm{Given:}}}

a and b are rational numbers

\sf{\dfrac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} } =a+b\sqrt{6} }

\Large{\underline{\rm{To\:Find:}}}

  • The value of a and b

\Large{\underline{\rm{Solution:}}}

Given,

\sf{\dfrac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} } =a+b\sqrt{6} }

Taking the LHS of the equation,

\sf{\dfrac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} }  }

Rationalising the denominator by multiplying √3 + √2 on both numerator and denominator,

\sf{\dfrac{\sqrt{3} +\sqrt{2}\times(\sqrt{3} +\sqrt{2} ) }{\sqrt{3} -\sqrt{2}\times(\sqrt{3} +\sqrt{2} ) }  }

Simplifying by using identities:

  • (a + b)² = a² + b² + 2ab
  • (a + b) × (a - b) = a² - b²

\sf \implies {\dfrac{3+2+2\sqrt{6} }{3-2} }

\sf \implies {\dfrac{3+2+2\sqrt{6} }{1} }

\sf \implies {5+2\sqrt{6} }

But we know that,

\sf{\dfrac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} } =a+b\sqrt{6} }

\sf {5+2\sqrt{6}=a+b\sqrt{6} }

Equating it we get,

a = 5

b = 2

Hence the value of a is 5 and value of b is 2.

Similar questions