Math, asked by omprakash05081971, 11 months ago

If a and b are rational number, find a and b. (b)

Attachments:

Answers

Answered by uday379
0

Answer:

the value of a=18

b=0

this is your answer

Answered by Delta13
1

We have,

\frac{ \sqrt{5} - 2 }{  \sqrt{5}  + 2} -  \frac{ \sqrt{5}  + 2}{ \sqrt{5} - 2 } = a + b \sqrt{5}   \\  \\ \texttt{  Rationalising the denominator} \\ \\\scriptsize{\frac{ \sqrt{5} - 2  \times ( \sqrt{5} - 2) }{ \sqrt{5}  + 2 \:  \times ( \sqrt{5} - 2) }  -  \frac{ \sqrt{5} + 2 \times ( \sqrt{5}  + 2) }{ \sqrt{5}  - 2 \times ( \sqrt{5}   + 2)}}  \\  \\ =   \small \frac{( { \sqrt{5} - 2) }^{2} }{ {( \sqrt{5} )}^{2}  - (2) {}^{2} }  - \frac{ {( \sqrt{5} + 2) }^{2} }{ {( \sqrt{5}) }^{2}  -  {(2)}^{2} } \\  \\    = \scriptsize\frac{ (\sqrt{5}) {}^{2} +  ({2})^{2}   - 2(\sqrt{5}  )(2)}{5 - 4}  -  \frac{ {( \sqrt{5} )}^{2}  + (2) {}^{2}  + 2( \sqrt{5})(2) }{5 - 4}  \\  \\ \texttt{Identities used:}\\(a+b)^2=a^2+b^2+2ab  \\(a-b)^2= a^2+b^2-2ab\\(a+b)(a-b)=a^2-b^2</p><p>\\ \\ = \frac{5 + 4 - 4 \sqrt{5} }{1}   -  \frac{5 + 4 + 4 \sqrt{5} }{1}  \\  \\  = 9  -  {4 \sqrt{5}}  -( 9 +  {4 \sqrt{5} }  ) \\  \\ =   \cancel{9}  - 4 \sqrt{5} -  \cancel{  9} - 4 \sqrt{5}  \\  \\  \implies - 8 \sqrt{5}  = a + b \sqrt{5}

On comparing it with a +b√5

We get,

\boxed{ \green{a = 0}} \\   \texttt{and}  \\ \boxed{ \green{b =  - 8}}

Similar questions