Math, asked by samalaxminarayana295, 4 months ago

if a and b are rational number find the value a and b in each of the following equations √3+√2/√3-√2=a+b√30​

Answers

Answered by vipashyana1
2

Answer:

a = 5 \: and \: b = 2

Step-by-step explanation:

 \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  = a + b \sqrt{6}  \\  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} } = a + b \sqrt{6}  \\  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  } = a + b \sqrt{6}  \\  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2} = a + b \sqrt{6}  \\  \frac{5 + 2 \sqrt{6} }{1}  =a + b \sqrt{6}  \\ 5 + 2 \sqrt{6} = a + b \sqrt{6}  \\ a = 5 \: and \: b = 2

Similar questions