Math, asked by pn459309, 4 months ago

if a and b are rational number then find the value of a and b for which(5+3√3)/(7+4√3). = a-b√3

Answers

Answered by Anonymous
16

Answer :-

\sf \dfrac{5 + 3\sqrt{3}}{7+4\sqrt{3}} = a - b\sqrt{3}

Solving LHS part :-

\implies\sf \frac{5 + 3\sqrt{3}}{7+4\sqrt{3}}

Rationalizing the denominator -

\implies\sf \Big(\dfrac{5 + 3\sqrt{3}}{7+4\sqrt{3}}\Big) \times \Big(\dfrac{7-4\sqrt{3}}{7-4\sqrt{3}}\Big)

\implies\sf \dfrac{(5+3\sqrt{3})(7-4\sqrt{3})}{( 7 + 4\sqrt{3})(7 - 4 \sqrt{3})}

\implies\sf \dfrac{5(7-\sqrt{3}) + 3\sqrt{3}(7-\sqrt{3})}{7^2 - (4\sqrt{3})^2}

\implies\sf \dfrac{ 35 - 5\sqrt{3} + 21\sqrt{3} - 3\times 3}{49 - 48 }

\implies\sf \dfrac{ 35 - 16 \sqrt{3} - 9}{1}

\implies\sf 26 - 16 \sqrt{3}

Comparing LHS and RHS :-

\implies\sf 26 - 16 \sqrt{3} = a - b\sqrt{3}

  • \boxed{\sf a = 26}
  • \boxed{\sf b = 16}
Similar questions