Math, asked by adixti, 8 months ago

If a and b are rational numbers and √2+2√3/2√2+√3=a+b√6 , find the values of a and b​ please guys answer this for real not for the sake of points

Answers

Answered by ishikanarula0211
7

Answer:

a=-10 and b=-5

Step-by-step explanation:

first take LHS

your LHS is √2+2√3/2√2+√3

rationalise the LHS

you get -10-5√6

now LHS is equal to RHS

-10-5√6=a+b√6

hence a=-10  and  b=-5

hope this helps

if any problem then plz let me know

Answered by MisterIncredible
37

Given :-

 \bf \dfrac{ \sqrt{2} + 2 \sqrt{3}  }{2\sqrt{2}  +  \sqrt{3}  }  = a + b \sqrt{6}

Required to find :-

  • Values of a and b ?

Solution :-

Given data :-

 \bf \dfrac{ \sqrt{2}  +  2\sqrt{3}}{2 \sqrt{2} +  \sqrt{3}  }  = a + b \sqrt{6}

we need to find the values of a and b !

So,

Consider the LHS Part

 \tt \dfrac{ \sqrt{2}  + 2 \sqrt{3} }{2 \sqrt{2}  +  \sqrt{3} }

Now,

Let's rationalize the denominator of the LHS part ;

Rationalising factor of 22 + 3 = 22 - 3

Multiply the numerator and denominator with the Rationalising factor

 \tt \dfrac{ \sqrt{2}  + 2 \sqrt{3} }{2 \sqrt{2} +  \sqrt{3}  }   \times  \dfrac{2 \sqrt{2}  -  \sqrt{3} }{2 \sqrt{2}  -  \sqrt{ 3 } }

Here, we need to use one algebraic Identity ;

That is ;

  • ( x + y ) ( x - y ) = x² - y²

 \tt \dfrac{ \sqrt{2}  + 2 \sqrt{3} \: ( 2 \sqrt{2}  -  \sqrt{3} \: ) }{(2 \sqrt{2} {)}^{2}   - ( \sqrt{3} {)}^{2}  }

 \tt \dfrac{ \sqrt{2}  (2 \sqrt{2}  -  \sqrt{3}) + 2 \sqrt{3}(2 \sqrt{2}  -  \sqrt{3}  ) }{ {2}^{2} \times  {  \sqrt{ {2}^{2} }  -  \sqrt{ {3}^{2} }  }}

 \tt \dfrac{2 \times  \sqrt{ {2}^{2} } -  \sqrt{3}  \times  \sqrt{2} + 2 \times 2 \times  \sqrt{2}   \times  \sqrt{3} \times 2 \sqrt{ {3}^{2} }   }{4 \times 2 - 3}

 \tt \dfrac{2 \times 2 -  \sqrt{6} + 4 \sqrt{6}  - 2 \times 3 }{8 - 3}

 \tt \dfrac{4 -  \sqrt{6} + 4 \sqrt{6}  - 6 }{5}

 \tt \dfrac{2 + 3 \sqrt{6} }{5}

This can be written as ;

  \bf\dfrac{2}{5}  +  \dfrac{3 \sqrt{6} }{5}

Let's equate both LHS and RHS

 \bf \dfrac{2}{5} +  \dfrac{3 \sqrt{6} }{5} = a + b \sqrt{6}

From the above we can conclude that ;

The LHS is in the form of RHS

So,

  \overline{\downarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \downarrow} \\  \tt{ \dfrac{2}{5} +  \frac{3 \sqrt{6} }{5}  = a + b \sqrt{6} } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \underline {  \uparrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \uparrow}

Therefore,

Value of ' a ' is 2/5

Value of ' b ' is 3/5

Verification :-

It is mentioned that the values of a , b are rational number ;

So,

According to the properties of rational number ;

A number is said to be a rational number if it can be expressed in the form of p/q where p , q are integers . q≠0 and p,q are co - primes

Since,

The values of a , b are satisfying all these conditions hence we say that they are rational numbers .

( The value are expressed in p/q form, where 2 and 5 , 3 and 5 are co - primes similarly the denominator of the values of a ,b are not equal to 0 )

Hence proved !

Additional Information :-

Some of the algebraic identities useful when solving these type of numericals are ;

( x + y ) ( x + y ) = ( x + y )²

( x - y ) ( x - y ) = ( x - y )²

( x - y )² = x² + y² - 2xy

( x + y )² = x² + y² + 2xy

( x + a ) ( x + b ) = x² + x ( a + b ) + ab

Similar questions