Math, asked by kartiks5021, 2 months ago

if a and b are rational numbers and 2+√3/2-√3=a+b√3 find a and b​

Answers

Answered by adtyk
2

Answer:

a=7

b=4

Step-by-step explanation:

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  =  \frac{4 +4 \sqrt{3} + 3 }{4 - 3}  \\  =  \frac{7 + 4 \sqrt{3} }{1}  \\  = 7 + 4 \sqrt{3}  \\ a + b \sqrt{3}  = 7 + 4 \sqrt{3}  \\ a = 7 \\ b = 4

Answered by diyanagpal2005
0

Answer:

Step-by-step explanation:

2+root3/2-root 3

=2+\sqrt{3\\/2-\sqrt{3\\ * 2+\sqrt{3\\/2-\sqrt{3\\

=(2+\sqrt{3\\)^2/ 2^2 - (\sqrt{3\\)^2

4+3+4\sqrt{3\\/4-3

7+4\sqrt{3\\/1

On comparing

a+b\sqrt{3\\ = 7+4\sqrt{3\\

Hence a = 7

b = 4

Similar questions