Math, asked by saurav1993, 11 months ago

if a and b are rational numbers and 4+3√5/4-3√5=a+b√5. find the value of a and b.​

Answers

Answered by johnwick74
12

i hope this helps you solve the problem plz mark as brainliest

Attachments:
Answered by Anonymous
11

\huge\text{\underline{Answer}}

\sf{\underline{Given  }}

\frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5}

we have to find here the value of a and b.

Rationalising the denominator,

\implies \bold{ \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  \times  \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }  }

\implies \bold{\frac{ {(4 +3  \sqrt{5}) }^{2} }{( {4}^{2}) -  ( {3 \sqrt{5}) }^{2}   } }

\implies \bold{  \frac{16 + 24 \sqrt{5}  + 45}{16 - 45} }

\implies \bold{ \frac{61 + 24 \sqrt{5} }{ - 29} }

\implies \bold{   \frac{ - 61 - 24 \sqrt{5} }{29} }

\implies \bold{\frac{ - 61}{29}  -  \frac{24 \sqrt{5} }{29}  }

On comparing with a + b5 we get

\implies \bold{a =  \frac{ - 61}{29} b =  \frac{ - 24 \sqrt{5} }{29} }

Similar questions